MAO Zixin, WANG Tian. Research on application of TensorFlow face recognition technology in mining coal face[J]. Journal of Mine Automation, 2024, 50(S1): 78-81,109.
Citation: MAO Zixin, WANG Tian. Research on application of TensorFlow face recognition technology in mining coal face[J]. Journal of Mine Automation, 2024, 50(S1): 78-81,109.

Research on application of TensorFlow face recognition technology in mining coal face

More Information
  • Received Date: January 24, 2024
  • [1]
    闫淑萍.煤矿井下人员管理系统[J].煤炭科技, 2009(2):118-119.
    [2]
    刘迷.基于人脸识别的矿井人员管理技术研究[D].西安:西安科技大学, 2017.
    [3]
    辛晓东, 王荣.浅谈煤矿井下人员定位管理系统[J].机械管理开发, 2019, 34(3):240-241.
    [4]
    李晨鑫.煤矿入井人员唯一性检测技术研究[J].工矿自动化, 2014, 40(11):38-41.
    [5]
    谢子殿, 亢健铭.基于Mobilenetv3的煤矿人脸识别方法[J].黑龙江科技学院学报, 2022, 32(4):525-529.
    [6]
    陈立潮, 张秀琴, 潘理虎, 等.煤矿考勤系统中人脸识别算法的研究[J].工矿自动化, 2015, 41(4):69-73.
    [7]
    姜绍忠, 姚克明, 陈磊, 等.基于CNN与Transformer混合模型的口罩人脸识别方法[J].传感器与微系统, 2023, 42(1):144-148.
    [8]
    张国云, 向灿群, 罗百通, 等.一种改进的人脸识别CNN结构研究[J].计算机工程与应用, 2017, 53(17):180-185, 191.
    [9]
    程国.基于核特征融合与选择的人脸识别研究[D].西安:西安科技大学, 2010.
    [10]
    ABADI M, BARHAM P, CHEN J, et al.TensorFlow:a system for large-scale machine learning[J].CoRR, 2016, abs/1605.08695.
    [11]
    ABADI M, AGARWAL A, BARHAM P, et al.TensorFlow:large-scale machine learning on heterogeneous distributed systems[J].CoRR, 2016, abs/1603.04467.
    [12]
    AL-RFOU R, ALAIN G, ALMAHAIRI A, et al.Theano:a python framework for fast computation of mathematical expressions[J].CoRR, 2016, abs/1605.02688.
    [13]
    CUSSLER E L.Diffusion, mass transfer in fluid systems[J/OL].Choice Reviews Online, 1997, 35(2).DOI: 10.5860/choice.35-0927.
    [14]
    刘泽润, 尹宇飞, 薛文灏, 等.基于扩散模型的条件引导图像生成综述[J].浙江大学学报(理学版), 2023, 50(6):651-667.
    [15]
    胡新悦, 汪海蓉, 张会雄.基于Keras模型的深度学习实验教学研究[J].实验科学与技术, 2022, 20(3):137-140.
    [16]
    黄凯奇, 任伟强, 谭铁牛.图像物体分类与检测算法综述[J].计算机学报, 2014, 37(6):1225-1240.
    [17]
    王凤随, 王启胜, 陈金刚, 等.基于注意力机制和Soft-NMS的改进Faster R-CNN目标检测算法[J].激光与光电子学进展, 2021, 58(24):405-416.
    [18]
    朱均安.基于深度学习的视觉目标跟踪算法研究[D].长春:中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.
    [19]
    李灏, 唐敏, 林建武, 等.基于改进困难三元组损失的跨模态行人重识别框架[J].计算机科学, 2020, 47(10):180-186.
    [20]
    包宗铭, 龚声蓉, 钟珊, 等.基于双向KNN排序优化的行人再识别算法[J].计算机科学, 2019, 46(11):267-271.
    [21]
    孙园钦.基于Theano深度学习框架的图像识别算法研究[D].长春:吉林大学, 2018.
    [22]
    韩兴.随机梯度下降优化的量子多分类支持向量机[J].福建电脑, 2024, 40(2):1-6.
  • Related Articles

    [1]LI Dianze, XU Huajie, ZHANG Bo. Rock fracture type recognition based on deep feature learning of microseismic signals[J]. Journal of Mine Automation, 2025, 51(3): 156-164. DOI: 10.13272/j.issn.1671-251x.2024080043
    [2]GUO Xiaoyuan, ZHU Meiqiang, TIAN Jun, ZHU Beibei. Detection and recognition of unsafe behaviors of underground coal miners based on deep learning[J]. Journal of Mine Automation, 2025, 51(3): 138-147. DOI: 10.13272/j.issn.1671-251x.2025030011
    [3]WANG Xufeng. Location trajectory prediction of mining vehicles based on depth learning[J]. Journal of Mine Automation, 2024, 50(S1): 48-52.
    [4]ZHANG Lihui. Mask occlusion face recognition algorithm based on neural network model with optimized loss function[J]. Journal of Mine Automation, 2024, 50(S1): 15-20.
    [5]ZUO Mingming, ZHANG Xi, YANG Zihao, SUN Qifei, ZHANG Mengchao, ZHANG Yuan, LI Hu. Intelligent monitoring method for conveyor belt misalignment based on deep learning[J]. Journal of Mine Automation, 2024, 50(12): 166-172, 182. DOI: 10.13272/j.issn.1671-251x.2024030043
    [6]WANG Junli, LI Jiayue, LI Bingtian, WEN Qi, WANG Manli. Deep learning-based face detection method under low illumination conditions in coal mines[J]. Journal of Mine Automation, 2023, 49(11): 145-150. DOI: 10.13272/j.issn.1671-251x.2023080103
    [7]HU Jinghao, GAO Yan, ZHANG Hongjuan, JIN Baoquan. Research on the identification method of non-coal foreign object ofbelt conveyor based on deep learning[J]. Journal of Mine Automation, 2021, 47(6): 57-62. DOI: 10.13272/j.issn.1671-251x.2021020041
    [8]ZHANG Mengchao, ZHOU Manshan, ZHANG Yuan, YU Yan, LI Hu. Damage detection method for mine conveyor belt based on deep learning[J]. Journal of Mine Automation, 2021, 47(6): 51-56. DOI: 10.13272/j.issn.1671-251x.2021040010
    [9]TANG Shiyu, ZHU Aichun, ZHANG Sai, CAO Qingfeng, CUI Ran, HUA Gang. Target detection of underground personnel based on deep convolutional neural network[J]. Journal of Mine Automation, 2018, 44(11): 32-36. DOI: 10.13272/j.issn.1671—251x.2018050068
    [10]YANG Yu. Face recognition algorithm based on cascade sparse representation-based classifier[J]. Journal of Mine Automation, 2014, 40(5): 46-48. DOI: 10.13272/j.issn.1671-251x.2014.05.012
  • Cited by

    Periodical cited type(2)

    1. 张宇. 基于Unity引擎的虚拟现实平面设计流程优化. 软件. 2025(01): 172-174 .
    2. 姚建萍. 基于云计算的人工神经网络图像处理技术研究. 长江信息通信. 2025(02): 112-114 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (2) PDF downloads (0) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return