LUO Wen. Fault diagnosis of mine roof support swash plate based on SDP image processing algorithm[J]. Journal of Mine Automation, 2024, 50(S1): 7-10.
Citation: LUO Wen. Fault diagnosis of mine roof support swash plate based on SDP image processing algorithm[J]. Journal of Mine Automation, 2024, 50(S1): 7-10.

Fault diagnosis of mine roof support swash plate based on SDP image processing algorithm

More Information
  • Received Date: January 24, 2024
  • [1]
    励文艳, 程珩, 赵立红, 等.基于局部S变换和极限学习机的柱塞泵滑靴磨损故障诊断[J].液压与气动, 2019(12):15-21.
    [2]
    陈仁祥, 黄鑫, 杨黎霞, 等.基于卷积神经网络和离散小波变换的滚动轴承故障诊断[J].振动工程学报, 2018, 31(5):883-891.
    [3]
    ZHU Xiaoxun, HOU Dongnan, ZHOU Pei, et al.Rotor fault diagnosis using a convolutional neural network with symmetrized dot pattern images[J].Measurement, 2019, 138:526-535.
    [4]
    姜万录, 李振宝, 张生, 等.基于递归定量分析的液压泵故障识别方法[J].液压与气动, 2019(2):18-23.
    [5]
    郑直, 姜万录, 王宝中, 等.基于形态差值算子和特征能量比的液压泵故障分离方法[J].液压与气动, 2018(9):7-14.
    [6]
    张西宁, 张雯雯, 周融通, 等.基于多维缩放和随机森林的轴承故障诊断方法[J].西安交通大学学报, 2019, 53(8):1-7.
    [7]
    师冲, 任燕, 汤何胜, 等.基于经验模式分解和一维密集连接卷积网络的电液换向阀内泄漏故障诊断方法[J].液压与气动, 2021(1):36-41.
    [8]
    杜名喆, 王宝中.基于经验小波分解和卷积神经网络的液压泵故障诊断[J].液压与气动, 2020(1):163-170.
    [9]
    罗毅, 甄立敬.基于小波包与倒频谱分析的风电机组齿轮箱齿轮裂纹诊断方法[J].振动与冲击, 2015, 34(3):210-214.
    [10]
    丁锋, 栗祥, 韩帅.EEMD与NRS在涡桨发动机转子故障诊断中的应用[J].航空动力学报, 2018, 33(6):1423-1431.
    [11]
    贾京龙, 余涛, 吴子杰, 等.基于卷积神经网络的变压器故障诊断方法[J].电测与仪表, 2017, 54(13):62-67.
    [12]
    杨春才, 李向磊, 吕晓伟.煤机设备轴承故障诊断方法[J].工矿自动化, 2023, 49(12):147-151.
    [13]
    周翔宇, 毛善君, 李梅.基于频域降采样和CNN的轴承故障诊断方法[J].北京大学学报(自然科学版), 2023, 59(2):251-2600.
    [14]
    YU Wenxin, HUANG Shoudao, XIAO Weihong.Fault diagnosis based on an approach combining a spectrogram and a convolutional neural network with application to a wind turbine system[J].Energies, 2018, 11(10):2561.DOI: 10.3390/en11102561.
    [15]
    UDMALE S S, PATIL S S, PHALLE V M, et al.A bearing vibration data analysis based on spectral kurtosis and ConvNet[J].Soft Computing, 2019, 23(19):9341-9359.
    [16]
    WANG Baoxiang, PAN Hongxia, YANG Wei, et al.Fault diagnosis of rolling bearing using CVA based detector[J].Journal of Vibroengineering, 2016, 18(7):4285-4298.
    [17]
    XU Xiaohang, ZHENG Hong, GUO Zhongyuan, et al.SDD-CNN:small data-driven convolution neural networks for subtle roller defect inspection[J].Applied Sciences, 2019, 9(7):1364.DOI: 10.3390/app9071364.
    [18]
    雷亚国, 杨彬, 杜兆钧, 等.大数据下机械装备故障的深度迁移诊断方法[J].机械工程学报, 2019, 55(7):1-8.
    [19]
    王运生, 王黎明.基于SDP图像和深度卷积网络的发动机故障诊断[J].噪声与振动控制, 2023, 43(5):175-180.
    [20]
    武海彬, 卜明龙, 刘圆圆, 等.基于SDP图像与VGG网络的旋转机械转子故障诊断研究[J].机电工程, 2020, 37(9):1069-1074.
    [21]
    姜洪开, 邵海东, 李兴球.基于深度学习的飞行器智能故障诊断方法[J].机械工程学报, 2019, 55(7):27-34.
    [22]
    刘星辰, 周奇才, 赵炯, 等.一维卷积神经网络实时抗噪故障诊断算法[J].哈尔滨工业大学学报, 2019, 51(7):89-95.
  • Related Articles

    [1]HUANG Yuxin, YAN Zhenguo, FAN Jingdao, LI Chuan. Coal mine dual prevention information system based on Apriori algorithm[J]. Journal of Mine Automation, 2020, 46(10): 92-98. DOI: 10.13272/j.issn.1671 -251x.2020040095
    [2]GUO Zijian, LI Junshi. Design of software test platform for SAP integrated pressure pumping system[J]. Journal of Mine Automation, 2019, 45(12): 101-105. DOI: 10.13272/j.issn.1671-251x.2019080040
    [3]MO Shupei, TANG Jin, DU Yongwan, CHEN Ming. Underground adaptive positioning algorithm based on SAPSO-BP neural network[J]. Journal of Mine Automation, 2019, 45(7): 80-85. DOI: 10.13272/j.issn.1671-251x.2019010066
    [4]JIANG Lei, YANG Liuming, WU Fangda, HAN Huijie, ZHOU Xue. Underground positioning method based on GMapping algorithm and fingerprint map constructio[J]. Journal of Mine Automation, 2017, 43(9): 96-101. DOI: 10.13272/j.issn.1671-251x.2017.09.017
    [5]XU Huan, LI Zhenbi, JIANG Yuanyuan, HUANG Jianbo, HUANG Da. Research of automatic detection algorithm of conveying belt deviation based on OpenCV[J]. Journal of Mine Automation, 2014, 40(9): 48-52. DOI: 10.13272/j.issn.1671-251x.2014.09.012
    [6]WANG Qi-feng, ZHU Guo-yuan, SUN Xiao-ji. Design of FPGA-based Substation of Safety Monitoring and Control System of Coal Mine[J]. Journal of Mine Automation, 2010, 36(10): 29-31.
    [7]DAI Ming-jun, CHENG Can, SHEN Zhong-ze. Application Research of Apriori Algorithm of Association Rules in Production Scheduling Subsystem of Coal Mine[J]. Journal of Mine Automation, 2010, 36(7): 62-64.
    [8]LI Ming-hua. ISOMAP Algorithm and LLE Algorithm in Image Retrieval and Their Compariso[J]. Journal of Mine Automation, 2007, 33(6): 30-31.
    [9]ZHOU Jun, LI Xin-hao. Automatic Nondestructive Testing System of Fluorescent Magnetic Particle[J]. Journal of Mine Automation, 2005, 31(1): 15-16.
    [10]FAN Zhong-mi. To Add Automatic Testing to Shears[J]. Journal of Mine Automation, 2001, 27(5): 27-28.
  • Cited by

    Periodical cited type(8)

    1. 卢振. 基于随机森林算法的通风网络故障判识. 能源与节能. 2024(02): 71-74+78 .
    2. 张浪,刘彦青. 矿井智能通风与关键技术研究. 煤炭科学技术. 2024(01): 178-195 .
    3. 安赛,赵忠辉,张浪,李伟,彭然. 矿用对射式风速风向传感器设计. 工矿自动化. 2024(04): 50-54 . 本站查看
    4. 蔡震坤,陈禹. 超声波测风系统的设计及低速风洞试验分析. 科学技术创新. 2024(15): 215-218 .
    5. 郝天轩,张赞旺,李帆,王泽华. 基于STM32的无线传输便携式风速表的设计. 煤炭技术. 2024(08): 282-286 .
    6. 陈炫中,王孝东,杨懿杰,吕玉琪,刘唱,杜青文,谢博. 矿井巷道风速智能感知技术研究进展. 矿产保护与利用. 2024(04): 124-134 .
    7. 周福宝,辛海会,魏连江,时国庆,夏同强. 矿井智能通风理论与技术研究进展. 煤炭科学技术. 2023(01): 313-328 .
    8. 贠文倩. 通风与安全在矿井开采中的应用. 内蒙古石油化工. 2023(07): 52-55 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (4) PDF downloads (0) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return