DONG Kangning, YAN Shouqing, ZHANG Baolong. Research on quantitative evaluation of characteristic gas of coal seam spontaneous combustion based on AI self-learning[J]. Journal of Mine Automation, 2024, 50(S1): 104-109.
Citation: DONG Kangning, YAN Shouqing, ZHANG Baolong. Research on quantitative evaluation of characteristic gas of coal seam spontaneous combustion based on AI self-learning[J]. Journal of Mine Automation, 2024, 50(S1): 104-109.

Research on quantitative evaluation of characteristic gas of coal seam spontaneous combustion based on AI self-learning

More Information
  • Received Date: February 02, 2024
  • [1]
    张天宇, 鲁义, 施式亮, 等.基于支持向量机分类算法的多煤种煤自燃危险性预测[J].湖南科技大学学报(自然科学版), 2019, 34(2):11-17.
    [2]
    邓军, 雷昌奎, 曹凯, 等.采空区煤自燃预测的随机森林方法[J].煤炭学报, 2018, 43(10):2800-2808.
    [3]
    刘宝, 穆坤, 叶飞, 等.基于相关向量机的煤自燃预测方法[J].工矿自动化, 2020, 46(9):104-108.
    [4]
    王坤.新疆弱粘煤自然发火标志性气体试验研究[J].煤炭技术, 2020, 39(9):87-89..
    [5]
    赵兴国, 戴广龙.氧化煤自燃特性实验研究[J].中国安全生产科学技术, 2020, 16(6):55-60.
    [6]
    郭军, 金彦, 文虎, 等.矿井煤层自燃程度精细划分与预警方法研究[J].煤炭科学技术, 2021, 49(10):115-121.
    [7]
    任万兴, 郭庆, 石晶泰, 等.基于标志气体统计学特征的煤自燃预警指标构建[J].煤炭学报, 2021, 46(6):1747-1758.
    [8]
    谭波, 邵壮壮, 郭岩, 等.基于指标气体关联分析的煤自燃分级预警研究[J].中国安全科学学报, 2021, 31(2):33-39.
    [9]
    邓军, 白祖锦, 肖旸, 等.煤自燃指标体系试验研究[J].安全与环境学报, 2018, 18(5):1756-1761.
    [10]
    蒋恒.煤自燃多参数气体主辅预测指标体系研究[J].中国矿业, 2023, 32(4):147-153.
    [11]
    闫磊.港煤矿不同含硫煤自燃标志性气体生成规律研究[J].煤, 2023, 32(7):59-62.
    [12]
    丁徐琴, 张雷林.氧气体积分数对煤自燃特性影响的实验研究[J].煤矿安全, 2023, 54(7):156-162.
    [13]
    许娜, 黄斌, 李强, 等.机器学习在煤的地球化学中的应用[J].煤炭学报, 2022, 47(5):1895-1907.
    [14]
    MA Li, ZOU Li, REN Lifeng, et al.Prediction indices and limiting parameters of coal spontaneous combustion in the HuAInan mining area in China[J].Fuel, 2020, 264:116883.DOI: 10.1016/j.fuel.2019.116883
    [15]
    ONIFADE M, GENC B.Spontaneous combustion liability of coal and coal-shale:a review of prediction methods[J].International Journal of Coal Science & Technology, 2019, 6(2):151-168.
    [16]
    LEI Changkui, DENG Jun, CAO KAI, et al.A comparison of random forest and support vector machine approaches to predict coal spontaneous combustion in gob[J].Fuel, 2019, 239(1):297-311.
    [17]
    QU Lina.A study on the prediction method of coal spontaneous combustion development period based on critical temperature[J].Environmental Science and Pollution Research, 2018, 25:35748-35760.
    [18]
    牛会永, 邓湘陵, 李石林, 等.Experiment study of optimization on prediction index gases of coal spontaneous combustion[J].Journal of Central South University, 2016, 23(9):2321-2328.
    [19]
    王丹.RVM在煤自燃预测中的应用研究[J].煤, 2022, 31(4):1-5.
    [20]
    谢振华.基于RBF神经网络的采空区煤自燃预测[J].矿山工程, 2020, 8(2):7.DOI: 10.12677/ME.2020.82011.
  • Related Articles

    [1]YAN Shouqing, DONG Kangning, ZHANG Lianrong. Research on fire early warning technology in complex coal seam working face advancing[J]. Journal of Mine Automation, 2024, 50(S1): 96-99.
    [2]JIN Bing, ZHANG Lang, LI Wei, ZHENG Yi, LIU Yanqing, ZHANG Yibin. Rapid prediction algorithm for flow field in fully mechanized excavation face based on POD and machine learning[J]. Journal of Mine Automation, 2024, 50(10): 97-104, 119. DOI: 10.13272/j.issn.1671-251x.2024080090
    [3]LI Baolin, FENG Jiaqi, WANG Enyuan, SUN Xinyu, WANG Shuowei. Intelligent identification of electromagnetic radiation signals induced by coal rock fractures using machine learning[J]. Journal of Mine Automation, 2024, 50(9): 144-152. DOI: 10.13272/j.issn.1671-251x.2024070019
    [4]JIA Pengtao, LIN Kaiyi, GUO Fengjing. A temperature prediction model for coal spontaneous combustion based on PSO-SRU deep artificial neural networks[J]. Journal of Mine Automation, 2022, 48(4): 105-113. DOI: 10.13272/j.issn.1671-251x.2021090047
    [5]ZHANG Lang, ZHANG Yinghui, ZHANG Yibin, LI Zuo. Research on fault diagnosis method of ventilation network based on machine learning[J]. Journal of Mine Automation, 2022, 48(3): 91-98. DOI: 10.13272/j.issn.1671-251x.2021120093
    [6]HAO Yu, YE Zhengliang. Research on index gas and activation energy of coal spontaneous combustion under different methane atmosphere[J]. Journal of Mine Automation, 2019, 45(11): 65-69. DOI: 10.13272/j.issn.1671-251x.2019040104
    [7]GU Zhoujie, LIU Zhentang, LIU Haoxiong, QIAN Jifa, LIN Song, LI Xiaoliang. Experimental research on characteristics of coal spontaneous combustion and its influence on lower limits of gas explosion[J]. Journal of Mine Automation, 2019, 45(11): 59-64. DOI: 10.13272/j.issn.1671-251x.2019070039
    [8]SUN Liutao, DUAN Yujian, HUANG Junze. Optimization of index gases and division method of spontaneous combustion "three zones" in 10 coal seam of Qingdong Coal Mine[J]. Journal of Mine Automation, 2018, 44(11): 56-61. DOI: 10.13272/j.issn.1671—251x.2018070050
    [9]WU Fusheng. Experimental study on composite gas indexes optimization for coal spontaneous combustion predictio[J]. Journal of Mine Automation, 2018, 44(7): 61-65. DOI: 10.13272/j.issn.1671-251x.17341
    [10]LEI Ming, HOU Yuan-bi. Monitoring and Prediction System of Spontaneous Combustion of Coal Seam Based on Virtual Instrument[J]. Journal of Mine Automation, 2005, 31(3): 19-21.

Catalog

    Article Metrics

    Article views (3) PDF downloads (0) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return