WU Ming-jie, ZHANG Wei. Performances Analysis of Anti-disturbance of Direct-sequence Spread-spectrum System[J]. Journal of Mine Automation, 2002, 28(6): 10-12.
Citation: WU Ming-jie, ZHANG Wei. Performances Analysis of Anti-disturbance of Direct-sequence Spread-spectrum System[J]. Journal of Mine Automation, 2002, 28(6): 10-12.

Performances Analysis of Anti-disturbance of Direct-sequence Spread-spectrum System

More Information
  • Spread spectrum communication is suit to coal mine communication, which has some advantages such as strong anti disturbance, easy to realize CDMA. So introducing the new technology of spread spectrum communication can promote the mine communication and achieve the demand of modernization. The paper analyzes resist ability for all kinds of disturbances in spread spectrum system, and calculates the processing gain for these disturbances.
  • Related Articles

    [1]LI Libao, YUAN Yong, QIN Zhenghan, LI Bo, YAN Zhengtian, LI Yong. Research on coal-gangue identification technology driven by multi-source fusion of image features and vibration spectrum[J]. Journal of Mine Automation, 2024, 50(11): 43-51. DOI: 10.13272/j.issn.1671-251x.2024080081
    [2]ZHU Daixian, QIU Qiang, KONG Haoran, HU Qisheng, LIU Shulin. A line feature matching algorithm for mine images based on line segment detection and LT descriptors[J]. Journal of Mine Automation, 2024, 50(2): 72-82. DOI: 10.13272/j.issn.1671-251x.2023090045
    [3]GUO Zhongtian, WANG Ranfeng, FU Xiang, WEI Kai, WANG Yulong. Method for extracting froth velocity of coal slime flotation based on image feature matching[J]. Journal of Mine Automation, 2022, 48(10): 34-39, 54. DOI: 10.13272/j.issn.1671-251x.17991
    [4]HUANG Lei, GUO Chaoya. Texture feature extraction of coal-rock image based on variogram and local variance image[J]. Journal of Mine Automation, 2018, 44(4): 62-68. DOI: 10.13272/j.issn.1627-251x.17311
    [5]LIU Yong, CUI Hongqing. Research on coal-bed image fractures identification based on fracture shape characteristics[J]. Journal of Mine Automation, 2017, 43(10): 59-64. DOI: 10.13272/j.issn.1671-251x.2017.10.012
    [6]MI Qiang, XU Yan, LIU Bin, XU Yunjie. Extraction method of texture feature of images of coal and gangue[J]. Journal of Mine Automation, 2017, 43(5): 26-30. DOI: 10.13272/j.issn.1671-251x.2017.05.007
    [7]SUN Jiping, YANG Kun. A coal-rock image feature extraction and recognition method[J]. Journal of Mine Automation, 2017, 43(5): 1-5. DOI: 10.13272/j.issn.1671-251x.2017.05.001
    [8]TAN Chunchao, YANG Jieming. Research on extraction of image gray information and texture features of coal and gangue image[J]. Journal of Mine Automation, 2017, 43(4): 27-31. DOI: 10.13272/j.issn.1671-251x.2017.04.007
    [9]HAO Jianhua. Research of personnel tracking algorithm for coal mine substation based on CamShift and particle filter[J]. Journal of Mine Automation, 2015, 41(11): 35-38. DOI: 10.13272/j.issn.1671-251x.2015.11.009
    [10]WU Yunxia, ZHANG Haopeng, DU Dongbi. Feature extraction method for human ear image and its application in miner identificatio[J]. Journal of Mine Automation, 2015, 41(11): 30-34. DOI: 10.13272/j.issn.1671-251x.2015.11.008

Catalog

    Article Metrics

    Article views (89) PDF downloads (0) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return