WANG Wei-qin, LI Xiao-ming, TIAN Mu-qin, SONG Jian-cheng, WANG Wei, YAN Li. Design of dynamic load identification device for cutting mechanism of rock roadheader[J]. Journal of Mine Automation, 2013, 39(9): 16-20. DOI: 10.7526/j.issn.1671-251X.2013.09.005
Citation: WANG Wei-qin, LI Xiao-ming, TIAN Mu-qin, SONG Jian-cheng, WANG Wei, YAN Li. Design of dynamic load identification device for cutting mechanism of rock roadheader[J]. Journal of Mine Automation, 2013, 39(9): 16-20. DOI: 10.7526/j.issn.1671-251X.2013.09.005

Design of dynamic load identification device for cutting mechanism of rock roadheader

More Information
  • In view of problems of poor ability of automation cutting, bad stability and difficult real-time identification of dynamic load of cutting of extra-heavy type rock roadheader, a kind of dynamic load identification device for cutting mechanism of rock roadheader based on RBF neural network was designed according to characteristics of mining roadway, and designs of hardware and software of the identification device were introduced in details. To take industrial computer as analysis center, the device can real-timely monitor signals of cutting motor current and cutting head vibration, and uses multi-sensor fusion technology and RBF neural network to realize signal processing and intelligent analysis, so as to realize feature extraction and recognition of dynamic load of cutting rock and achieve effective distinction of rocks with different hardness.
  • Related Articles

    [1]SUN Qingfang, KUANG Yali, SANG Kai, CAO Bing. Application of sensors in China coal preparation plant[J]. Journal of Mine Automation, 2014, 40(2): 26-29. DOI: 10.13272/j.issn.1671-251x.2014.02.008
    [2]WEI Bao-li. Fast Selection of Common Used Sensors in Project Desig[J]. Journal of Mine Automation, 2010, 36(9): 119-120.
    [3]ZHANG Li, WANG Ru-Lin, WANG Ying, HE Yu-Kai. Research of Detection Model of Mine-used Infrared Gas Sensor Based on Neural Network[J]. Journal of Mine Automation, 2009, 35(8): 18-21.
    [4]TIAN Bing, ZHAO Zong-qu, LI Chang-chu. Design of Sensor System Based on USB Interface[J]. Journal of Mine Automation, 2009, 35(6): 111-112.
    [5]WANG Cong-xiao. Online Checking and Signing Method of Sensor in Safety Monitoring and Control System of Coal Mine[J]. Journal of Mine Automation, 2008, 34(4): 66-67.
    [6]HAN Bing, FU Hua. Gas Monitoring System Based on Data Fusion with BP Neural Network[J]. Journal of Mine Automation, 2008, 34(4): 10-13.
    [7]ZONG Cong-jiu, ZHANG Zhi-xian, GUAN Zong-an, LI Li-na. Design of Image Collecting System Based on CMOS Sensor[J]. Journal of Mine Automation, 2008, 34(2): 113-115.
    [8]LEI Zhi-xiang, HUANG Xiao-ya. Design of Mine Monitoring System Based on Embedded Web Sensors[J]. Journal of Mine Automation, 2007, 33(1): 30-33.
    [9]LIU Jun-yao, CHEN Ming. Research on Conflagration Forecast Technology with Information Fusion of Multi-sensor[J]. Journal of Mine Automation, 2003, 29(5): 14-16.
    [10]XU Meng-fa. Current Status and Development of Sensors Applied in Coal Mine[J]. Journal of Mine Automation, 1996, 22(4): 27-29.
  • Cited by

    Periodical cited type(14)

    1. 谭超,闵薪宇,辛亮,孙其浩,谭继伟,欧星作. 一种基于单轴向充磁永磁环励磁的钢丝绳无损检测方法. 传感技术学报. 2024(04): 731-736 .
    2. 赵陆. 电梯钢丝绳损伤检测装置设计. 机械管理开发. 2024(12): 105-106+109 .
    3. 曹义威,张士超,陈小伟,徐光鹏,何宝林. 海洋石油钻修井钢丝绳在线监测技术研究与应用. 无损探伤. 2023(04): 30-33 .
    4. 王文庆,刘文辉,李生辉,徐午言. 基于永磁环励磁结构的钢丝绳无损检测设计. 西安邮电大学学报. 2023(05): 92-101 .
    5. 田劼,孙钢钢,李睿峰,王伟. 基于正交试验的钢丝绳探伤仪结构参数优化. 工矿自动化. 2022(09): 100-108 . 本站查看
    6. 王红尧,吴佳奇,李长恒,唐文锦,张艳林. 矿用钢丝绳损伤检测信号处理方法研究. 工矿自动化. 2021(02): 58-62 . 本站查看
    7. 窦连城,战卫侠,白晓瑞. 钢丝绳内外部断丝损伤识别. 工矿自动化. 2021(03): 83-88 . 本站查看
    8. 王红尧,田劼,张艳林,刘志宏,陈艺童. 矿用钢丝绳在线监测教学实验装置关键技术. 煤矿安全. 2021(06): 177-182 .
    9. 王锐. 参加者较少的钢丝拉伸能力验证评价方法应用. 机械研究与应用. 2021(03): 208-211 .
    10. 靳志强. 矿用提升机钢丝绳损伤检测装置的设计. 机械管理开发. 2021(08): 253-255 .
    11. 田劼,王洋洋,郭红飞,赵彩跃. 基于漏磁检测的钢丝绳探伤原理与方法研究. 煤炭工程. 2021(09): 95-100 .
    12. 王红尧,李小伟,韩亦淼,吕昕. 矿用钢丝绳损伤检测系统设计. 工矿自动化. 2020(06): 92-97 . 本站查看
    13. 张方泽. 矿用提升机制动过程与制动效果分析. 低碳世界. 2020(08): 166-167 .
    14. 窦连城,战卫侠. 钢丝绳断丝损伤漏磁场计算与仿真研究. 工矿自动化. 2020(10): 87-91 . 本站查看

    Other cited types(12)

Catalog

    Article Metrics

    Article views (65) PDF downloads (18) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return