MIAO Xiao-peng, SANG Zhen-hua. Application of fuzzy PID and Hopfield neural network in mine ventilation system[J]. Journal of Mine Automation, 2013, 39(8): 38-41. DOI: 10.7526/j.issn.1671-251X.2013.08.011
Citation: MIAO Xiao-peng, SANG Zhen-hua. Application of fuzzy PID and Hopfield neural network in mine ventilation system[J]. Journal of Mine Automation, 2013, 39(8): 38-41. DOI: 10.7526/j.issn.1671-251X.2013.08.011

Application of fuzzy PID and Hopfield neural network in mine ventilation system

More Information
  • In view of problem that traditional PID control and single fuzzy control cannot control air flow of mine ventilation system accurately, the paper proposed a control method for rotational speed, air door and air flow of mine ventilator by using fuzzy PID regulator and Hopfield neural network regulator. The method employs fuzzy controller to correct PID parameters real-timely and combines association memory function and feedback regulation performance of Hopfield neural network, so as to realize quick and steady output of mine ventilator. The results of simulation and experiment show that the fuzzy PID regulator and Hopfield neural network regulator can control rotational speed and air flow of mine ventilator accurately and realize steady output of ventilation system.
  • Related Articles

    [1]ZHOU Yiheng, YAN Jiaming, WU Xinzhong, REN Zihui. Comparison and analysis of aging characteristics of insulation paper between mine power transformer and ordinary power transformer[J]. Journal of Mine Automation, 2020, 46(11): 34-40. DOI: 10.13272/j.issn.1671 -251x.2020080095
    [2]REN Xiaohong, WAN Hong, YU Xiao, DING Enjie. Open-circuit fault diagnosis of three-level inverter based on Park transformatio[J]. Journal of Mine Automation, 2020, 46(5): 82-86. DOI: 10.13272/j.issn.1671-251x.17523
    [3]LI Shiguang, XUE Han, LI Zhen, GAO Zhengzhong, LI Ying. Fault diagnosis of mine-used transformer based on optimized fuzzy Petri net[J]. Journal of Mine Automation, 2017, 43(5): 54-57. DOI: 10.13272/j.issn.1671-251x.2017.05.013
    [4]LI Hong, TIAN Mu-qi. Application of Rough Set in Fault Diagnosis of Power Transformer[J]. Journal of Mine Automation, 2011, 37(3): 32-35.
    [5]LI De-chen, LIAO Hong-mei, WANG Yu-yang, LV Ming. Analysis of Winding Connection Way of Main Transformers of Power Transformer and Its Simulatio[J]. Journal of Mine Automation, 2007, 33(5): 28-29.
    [6]LIN Chun-ying. Applying the Phase Recurrence Algorithm to Decide Connection Group of Three-phase Transformer[J]. Journal of Mine Automation, 2005, 31(6): 28-29.
    [7]SHEN Jin-lin, WANG Zhu-hua. Structure Reform of Rectifier Transformer with High-voltage Silico[J]. Journal of Mine Automation, 2004, 30(1): 38-39.
    [8]ZHANG Jin-bo, HU Gang, ZHANG Xue-wu. Using Isolation Way of Tone Transformer to Realize Remote Data Transmissio[J]. Journal of Mine Automation, 2002, 28(2): 36-37.
    [9]WU Yan-hua, MENG Jiao-ru. The Operating Disturbances Analysis of the Coal Transformer[J]. Journal of Mine Automation, 2001, 27(3): 40-42.
    [10]XIAO Hai-feng, HONG Ting. Secondary Line Design of Centralized Control for Low-voltage System with Δ-Y0-11/Y-Y0-12 in Coal Preparation Plant[J]. Journal of Mine Automation, 2000, 26(5): 46-46.
  • Cited by

    Periodical cited type(6)

    1. 杨敬娜,郝克明,朱霄珣,董勇敢. 激励下齿轮-转子系统故障模糊C聚类诊断. 机械设计与制造. 2023(04): 296-299+304 .
    2. 张德宇,罗玉梅. 粗糙集下网络大数据混合属性特征检测仿真. 计算机仿真. 2021(01): 460-463+485 .
    3. 潘红光,宋浩骞,苏涛,马彪. 基于SVM的煤炭低位发热量软测量. 西安科技大学学报. 2021(06): 1130-1137 .
    4. 周明春. 矿山机械设备故障的检测方法研究. 世界有色金属. 2019(08): 60+62 .
    5. 孙海霞,木合塔尔·克力木,王晨,李卉. RS-CS-SVM在电液伺服系统故障诊断中的应用. 组合机床与自动化加工技术. 2018(06): 47-50+55 .
    6. 刘洋,丁云飞. 风力发电机典型智能故障诊断方法综述. 上海电机学院学报. 2017(06): 353-360+372 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (59) PDF downloads (20) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return