WANG Yanlin, PEI Xiaodong, WANG Kai, et al. Research on early fire source identification and anti-interference methods in mines based on dual-spectrum imaging technology[J]. Journal of Mine Automation,2025,51(3):122-130. DOI: 10.13272/j.issn.1671-251x.2024120060
Citation: WANG Yanlin, PEI Xiaodong, WANG Kai, et al. Research on early fire source identification and anti-interference methods in mines based on dual-spectrum imaging technology[J]. Journal of Mine Automation,2025,51(3):122-130. DOI: 10.13272/j.issn.1671-251x.2024120060

Research on early fire source identification and anti-interference methods in mines based on dual-spectrum imaging technology

More Information
  • Received Date: December 19, 2024
  • Revised Date: March 20, 2025
  • Available Online: March 18, 2025
  • Existing image analysis-based methods for exogenous mine fire detection are affected by complex mining environments and interference sources. Single-modal methods tend to misjudge light sources as fire sources, while multi-modal methods fail to utilize temperature information for fire source identification. Additionally, both methods have low identification accuracy under dust conditions. To address the above issues, an early fire source identification and anti-interference method for mines based on dual-spectrum imaging technology was proposed. First, the YOLOv10 model was used for real-time fire source detection on visible light images, and infrared thermal imaging was employed to obtain temperature distribution data. Then, Canny edge detection and image binarization preprocessing were applied to eliminate imaging differences between visible light and infrared images. Finally, the pHash algorithm was used to calculate the Hamming distance of the edge hash values between visible light and infrared images, and a threshold (Hamming distance≤25) was set to determine whether they represented the same fire source, thus effectively distinguishing fire sources from interference sources. The experimental results showed that under conditions without dust or interference sources, the accuracy of the early fire source detection and anti-interference method based on dual-spectrum imaging technology reached 98%, with a recall rate of 94%, outperforming the single-modal YOLOv10 (accuracy 97%, recall rate 86%). Under dust interference conditions, when 33% of the camera surface was covered by dust, the accuracy and recall rates were 85% and 80%, respectively. When 66% of the camera surface was covered by dust, the accuracy the recall rate were 70% and 65%, which were superior to both single-modal and multi-modal methods.

  • [1]
    邓军,李鑫,王凯,等. 矿井火灾智能监测预警技术近20年研究进展及展望[J]. 煤炭科学技术,2024,52(1):154-177.

    DENG Jun,LI Xin,WANG Kai,et al. Research progress and prospect of mine fire intelligent monitoring and early warning technology in recent 20 years[J]. Coal Science and Technology,2024,52(1):154-177.
    [2]
    邓军,张琦,陈炜乐,等. 矿井煤自燃灾害监测预警技术及发展趋势[J]. 煤矿安全,2024,55(3):99-110.

    DENG Jun,ZHANG Qi,CNEN Weile,et al. Coal spontaneous combustion disaster monitoring and early warning technologies and development trend for coal mines[J]. Safety in Coal Mines,2024,55(3):99-110.
    [3]
    孙继平,李小伟,徐旭,等. 矿井电火花及热动力灾害紫外图像感知方法研究[J]. 工矿自动化,2022,48(4):1-4,95.

    SUN Jiping,LI Xiaowei,XU Xu,et al. Research on ultraviolet image perception method of mine electric spark and thermal power disaster[J]. Journal of Mine Automation,2022,48(4):1-4,95.
    [4]
    王远声,景国勋,郭绍帅,等. 煤矿瓦斯爆炸灾害的复杂网络分析与断链减灾措施研究[J/OL]. 安全与环境学报:1-11[2024-11-24]. https://doi.org/10.13637/j.issn.1009-6094.2024.0569.

    WAGN Yuansheng,JING Guoxun,GUO Shaoshuai,et al. Complex network analysis for disaster chain evaluation and mitigation of coal mine gas explosions[J/OL]. Journal of Safety and Environment:1-11[2024-11-24]. https://doi.org/10.13637/j.issn.1009-6094.2024.0569.
    [5]
    张洪亮. 基于虚拟现实技术的煤矿胶带火灾模拟系统[J]. 煤矿安全,2014,45(4):128-131.

    ZHANG Hongliang. Coal mine belt fire simulation system based on virtual reality technology[J]. Safety in Coal Mines,2014,45(4):128-131.
    [6]
    赵文军. 矿井火灾爆炸危险性评估与防控技术研究[J]. 能源与节能,2025(2):179-181. DOI: 10.3969/j.issn.2095-0802.2025.02.048

    ZHAO Wenjun. Mine fire and explosion risk assessment and prevention and control technologies[J]. Energy and Energy Conservation,2025(2):179-181. DOI: 10.3969/j.issn.2095-0802.2025.02.048
    [7]
    徐宏宇,续婷. 一种基于颜色和纹理的优化SVM火灾识别方法[J]. 沈阳航空航天大学学报,2021,38(4):54-60. DOI: 10.3969/j.issn.2095-1248.2021.04.007

    XU Hongyu,XU Ting. A color/texture-based improved SVM for fire recognition[J]. Journal of Shenyang Aerospace University,2021,38(4):54-60. DOI: 10.3969/j.issn.2095-1248.2021.04.007
    [8]
    熊昊,李伟. 基于SVM的视频火焰检测算法[J]. 传感器与微系统,2020,39(1):143-145,149.

    XIONG Hao,LI Wei. Video flame detection algorithm based on SVM[J]. Transducer and Microsystem Technologies,2020,39(1):143-145,149.
    [9]
    王亚,张宝峰. 基于显著性检测的红外森林火灾监测系统[J]. 消防科学与技术,2018,37(12):1700-1703. DOI: 10.3969/j.issn.1009-0029.2018.12.029

    WANG Ya,ZHANG Baofeng. Infrared forest fire monitoring system based on saliency detection[J]. Fire Science and Technology,2018,37(12):1700-1703. DOI: 10.3969/j.issn.1009-0029.2018.12.029
    [10]
    王思嘉,裴海龙. 基于火焰图像红外动态特征的早期火灾识别算法[J]. 现代电子技术,2010,33(8):104-105,110. DOI: 10.3969/j.issn.1004-373X.2010.08.033

    WANG Sijia,PEI Hailong. Algorithm for early fire recognition based on infrared dynamic characteristics of flame images[J]. Modern Electronics Technique,2010,33(8):104-105,110. DOI: 10.3969/j.issn.1004-373X.2010.08.033
    [11]
    刘培江,董辉,宋子刚,等. 基于视频图像处理技术的火焰识别算法[J]. 热能动力工程,2021,36(3):64-71.

    LIU Peijiang,DONG Hui,SONG Zigang,et al. Flame recognition algorithm based on video and image processing technology[J]. Journal of Engineering for Thermal Energy and Power,2021,36(3):64-71.
    [12]
    孙继平,崔佳伟. 矿井外因火灾感知方法[J]. 工矿自动化,2021,47(4):1-5,38.

    SUN Jiping,CUI Jiawei. Mine external fire sensing method[J]. Industry and Mine Automation,2021,47(4):1-5,38.
    [13]
    孙继平,李月. 基于双目视觉的矿井外因火灾感知与定位方法[J]. 工矿自动化,2021,47(6):12-16,78.

    SUN Jiping,LI Yue. Binocular vision-based perception and positioning method of mine external fire[J]. Industry and Mine Automation,2021,47(6):12-16,78.
    [14]
    韩斌,吴一全,宋昱. 基于改进CV模型的煤矿井下早期火灾图像分割[J]. 煤炭学报,2017,42(6):1620-1627.

    HAN Bin,WU Yiquan,SONG Yu. Segmentation of early fire image of mine based on improved CV model[J]. Journal of China Coal Society,2017,42(6):1620-1627.
    [15]
    梁运涛,王伟. 矿井外因火灾监测预警与智能防控技术[J/OL]. 矿业安全与环保:1-8[2024-11-17]. http://kns.cnki.net/kcms/detail/50.1062.TD.20241022.1004.002.html.

    LIANG Yuntao,WANG Wei. Mine exogenous fire monitoring and early warning and intelligent prevention and controltechnology[J/OL]. Mining Safety & Environmental Protection:1-8[2024-11-17]. http://kns.cnki.net/kcms/detail/50.1062.TD.20241022.1004.002.html.
    [16]
    范伟强. 矿井外因火灾双光谱图像监测方法研究[D]. 北京:中国矿业大学(北京),2022.

    FAN Weiqiang. Study on dual-spectral image monitoring method of mine external fire[D]. Beijing:China University of Mining & Technology-Beijing,2022.
    [17]
    孙继平,范伟强. 矿井红外热成像远距离测温误差分析与精确测温方法[J]. 煤炭学报,2022,47(4):1709-1722.

    SUN Jiping,FAN Weiqiang. Error analysis and accurate temperature measurement method of infrared thermal imaging long-distance temperature measurement in underground mine[J]. Journal of China Coal Society,2022,47(4):1709-1722.
    [18]
    李益明,卜雄洙,沈樾. 基于红外传感器和图像识别的复合式火焰检测技术研究[J]. 仪表技术,2024(4):39-43,59.

    LI Yiming,BU Xiongzhu,SHEN Yue. Research on composite flame detection technology based on infrared sensors and image recognition[J]. Instrumentation Technology,2024(4):39-43, 59.
    [19]
    孙继平,李小伟. 基于图像内凹度的矿井外因火灾识别及抗干扰方法[J]. 煤炭学报,2024,49(7):3253-3264.

    SUN Jiping,LI Xiaowei. Mine external fire recognition and anti-interference method based on the internal concavity of image[J]. Journal of China Coal Society,2024,49(7):3253-3264 .
    [20]
    刘汝琪. 基于多模态图像的火灾检测算法研究[D]. 西安:中国科学院大学(中国科学院西安光学精密机械研究所),2022.

    LIU Ruqi. Research on fire detection algorithms based on multimodalImages[D]. Xi'an:Xi'an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,2022.
    [21]
    金政北,金贝贝,宋晓辉,等. 改进YOLOv10算法及其在路面坑洼检测中的应用[J/OL]. 计算机应用与软件:1-8[2024-11-24]. http://kns.cnki.net/kcms/detail/31.1260.tp.20250307.0824.002.html.

    JIN Zhengbei,JIN Beibei,SONG Xiaohui,et al. Improved YOLOv10 algorithm and its application on pothole detection[J/OL]. Computer Applications and Software:1-8[2024-11-24]. http://kns.cnki.net/kcms/detail/31.1260.tp.20250307.0824.002.html.
  • Related Articles

    [1]LIU Zhixiang, SUN Zhan, YIN Jiakuo, ZOU Kang. Experimental study on coal rock recognition based on infrared thermal imaging and vibration signals[J]. Journal of Mine Automation, 2024, 50(4): 78-83, 152. DOI: 10.13272/j.issn.1671-251x.2023110029
    [2]LI Wenzong, HUA Gang. A compressive sensing measurement matrix for image signal[J]. Journal of Mine Automation, 2022, 48(1): 45-52. DOI: 10.13272/j.issn.1671-251x.2021070048
    [3]NIU Chao, YAO Yu-mei. Research of Adaptive Backstepping Control of Crane Hoisting System[J]. Journal of Mine Automation, 2011, 37(9): 67-71.
    [4]WANG Yong-chao, SUN Huai-xiang. Application of Access and MCGS in Loading System of Main Shaft[J]. Journal of Mine Automation, 2010, 36(5): 94-97.
    [5]ZHOU Xin, MIAO Chang-yun, LI Yan-feng, WU Zhi-gang. Optimization of CS-ACELP Voice Code Algorithm and Its Implementation on DSP[J]. Journal of Mine Automation, 2009, 35(12): 69-72.
    [6]WANG Hong-yuan, SHI Lian-min, ZHOU Yue, CHENG Qi-cai, YANG Xiao-ying. Method of Digital Image Processing Based on DSP and S-function and Its Implementatio[J]. Journal of Mine Automation, 2009, 35(3): 24-27.
    [7]CAO Wen, SUN Wei, ZHAO Hui. Application Based on Ethernet of Microsoft Office Access in Query System of RSView Report Formas[J]. Journal of Mine Automation, 2007, 33(5): 123-124.
    [8]ZHANG Lin. Network Linking System with PLC of Series SYSMAC[J]. Journal of Mine Automation, 2000, 26(5): 31-32.
  • Cited by

    Periodical cited type(1)

    1. 丁自伟,高成登,景博宇,黄兴,刘滨,胡阳,桑昊旻,徐彬,秦立学. 基于机器学习的煤系地层TBM掘进巷道围岩强度预测. 西安科技大学学报. 2025(01): 49-60 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (15) PDF downloads (0) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return