WAN Maoquan, LI Hao, WANG Hao. Research and application of unified cross-system data services for coal mines based on industrial internet platforms[J]. Journal of Mine Automation,2025,51(3):96-104. DOI: 10.13272/j.issn.1671-251x.2024110036
Citation: WAN Maoquan, LI Hao, WANG Hao. Research and application of unified cross-system data services for coal mines based on industrial internet platforms[J]. Journal of Mine Automation,2025,51(3):96-104. DOI: 10.13272/j.issn.1671-251x.2024110036

Research and application of unified cross-system data services for coal mines based on industrial internet platforms

More Information
  • Received Date: November 11, 2024
  • Revised Date: March 17, 2025
  • Available Online: March 18, 2025
  • Currently, the application of industrial internet platforms in coal mines faces issues such as the inability to fully utilize the value of data, limited data flow between different systems, and a lack of a unified permission management mechanism for cross-system data interactions. These issues increase the risks of data tampering and unauthorized access. A unified cross-system data service system for coal mines was proposed based on an industrial internet platform. The system comprised a five-layer cross-system data model (thematic domain grouping-thematic domain-business object-logical entity-attribute), which covered the monitoring and control level, production management level, and operation management level. It established an "Interface Layer-Service Layer-Storage Layer" collaborative architecture. The system integrated a dynamic protocol adaptation engine, containerized microservice deployment, and low-code interface configuration tools. Additionally, it employed a dynamic hierarchical authentication mechanism and an end-to-end behavior monitoring system. These features together enabled standardized access, secure transfer, and precise interaction of multi-source heterogeneous data. Test results showed that, compared to the traditional distributed interface model, the proposed system optimized average data response time from 270 ms to 148 ms and improved data processing accuracy to 99.57%. Practical application results indicated that over 12,000 hours of continuous operation, the service availability reached 99.6%, and data consistency errors were below 0.1%.

  • [1]
    王国法,庞义辉,任怀伟,等. 智慧矿山系统工程及关键技术研究与实践[J]. 煤炭学报,2024,49(1):181-202.

    WANG Guofa,PANG Yihui,REN Huaiwei,et al. System engineering and key technologies research and practice of smart mine[J]. Journal of China Coal Society,2024,49(1):181-202.
    [2]
    顾清华,江松,李学现,等. 人工智能背景下采矿系统工程发展现状与展望[J]. 金属矿山,2022(5):10-25.

    GU Qinghua,JIANG Song,LI Xuexian,et al. Development status and prospect of mining system engineering under the background of artificial intelligence[J]. Metal Mine,2022(5):10-25.
    [3]
    王家臣,刘云熹,李杨,等. 矿业系统工程60年发展与展望[J]. 煤炭学报,2024,49(1):261-279.

    WANG Jiachen,LIU Yunxi,LI Yang,et al. 60 years development and prospect of mining systems engineering[J]. Journal of China Coal Society,2024,49(1):261-279.
    [4]
    WANG Guofa,XU Yongxiang,REN Huaiwei. Intelligent and ecological coal mining as well as clean utilization technology in China:review and prospects[J]. International Journal of Mining Science and Technology,2019,29(2):161-169. DOI: 10.1016/j.ijmst.2018.06.005
    [5]
    韩建国. 神华智能矿山建设关键技术研发与示范[J]. 煤炭学报,2016,41(12):3181-3189.

    HAN Jianguo. Key technology research and demonstration of intelligent mines in Shenhua Group[J]. Journal of China Coal Society,2016,41(12):3181-3189.
    [6]
    鲍久圣,张可琨,王茂森,等. 矿山数字孪生MiDT:模型架构、关键技术及研究展望[J]. 绿色矿山,2023(1):166-177.

    BAO Jiusheng,ZHANG Kekun,WANG Maosen,et al. Mine Digital Twin:model architecture,key technologies and research prospects[J]. Journal of Green Mine,2023(1):166-177.
    [7]
    LI Jianguo,ZHAN Kai. Intelligent mining technology for an underground metal mine based on unmanned equipment[J]. Engineering,2018,4(3):381-391.
    [8]
    张帆,葛世荣. 矿山数字孪生构建方法与演化机理[J]. 煤炭学报,2023,48(1):510-522.

    ZHANG Fan,GE Shirong. Construction method and evolution mechanism of mine digital twins[J]. Journal of China Coal Society,2023,48(1):510-522.
    [9]
    王立兵,任予鑫,马昆,等. 多源数据融合智能识别煤矿山场景特征AI模型[J]. 煤炭学报,2023,48(12):4617-4631.

    WANG Libing,REN Yuxin,MA Kun,et al. AI model for intelligent recognition of coal mine scene features through multi-source data fusion[J]. Journal of China Coal Society,2023,48(12):4617-4631.
    [10]
    贺耀宜,陈晓晶,郝振宇,等. 智能矿山低代码工业物联网平台设计[J]. 工矿自动化,2023,49(6):141-148,174.

    HE Yaoyi,CHEN Xiaojing,HAO Zhenyu,et al. Design of intelligent mine low code industrial IoT platform[J]. Journal of Mine Automation,2023,49(6):141-148,174.
    [11]
    李荟,韩晓飞,朱万成,等. 基于多源信息融合的矿山边坡滑坡灾害研究现状与展望[J]. 工矿自动化,2024,50(6):6-15.

    LI Hui,HAN Xiaofei,ZHU Wancheng,et al. Current status and prospects of research on landslide disasters in mine slopes based on multi-source information fusion[J]. Journal of Mine Automation,2024,50(6):6-15.
    [12]
    MENON K,KÄRKKÄINEN H,WUEST T,et al. Industrial Internet platforms:a conceptual evaluation from a product lifecycle management perspective[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2019,233(5):1390-1401. DOI: 10.1177/0954405418760651
    [13]
    AGARWAL N,BREM A. Strategic business transformation through technology convergence:implications from General Electric's industrial Internet initiative[J]. International Journal of Technology Management,2015,67(2/3/4):196-214. DOI: 10.1504/IJTM.2015.068224
    [14]
    ZHANG Xianyu,MING Xinguo. A comprehensive industrial practice for industrial Internet platform (IIP):general model,reference architecture,and industrial verification[J]. Computers & Industrial Engineering,2021,158. DOI: 10.1016/J.CIE.2021.107426.
    [15]
    肖祥武,王丰,王晓辉,等. 面向工业互联网的智慧电厂仿生体系架构及信息物理系统[J]. 电工技术学报,2020,35(23):4898-4911.

    XIAO Xiangwu,WANG Feng,WANG Xiaohui,et al. Bionic structure and cyber-physical system for intelligent power plant oriented to the industrial internet[J]. Transactions of China Electrotechnical Society,2020,35(23):4898-4911.
    [16]
    蒋敏,郑力. 面向航空协同制造的工业互联网架构研究与应用[J]. 中国科学:技术科学,2022,52(1):3-13.

    JIANG Min,ZHENG Li. Industrial internet architecture for collaborative manufacturing of aviation equipment[J]. Scientia Sinica(Technologica),2022,52(1):3-13.
    [17]
    许继平,孔德政,王昭洋,等. 基于工业互联网的大米供应链数字孪生系统构建[J]. 农业机械学报,2023,54(3):372-381. DOI: 10.6041/j.issn.1000-1298.2023.03.038

    XU Jiping,KONG Dezheng,WANG Zhaoyang,et al. Construction of digital twin system of rice supply chain based on industrial internet[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(3):372-381. DOI: 10.6041/j.issn.1000-1298.2023.03.038
    [18]
    XU Chi,YU Haibin,JIN Xi,et al. Industrial Internet for intelligent manufacturing:past,present,and future[J]. Frontiers of Information Technology & Electronic Engineering,2024,25(9):1173-1192.
    [19]
    柴天佑,刘强,丁进良,等. 工业互联网驱动的流程工业智能优化制造新模式研究展望[J]. 中国科学:技术科学,2022,52(1):14-25.

    CHAI Tianyou,LIU Qiang,DING Jinliang,et al. Perspectives on industrial-internet-driven intelligent optimized manufacturing mode for process industries[J]. Scientia Sinica(Technologica),2022,52(1):14-25.
    [20]
    李首滨. 煤炭工业互联网及其关键技术[J]. 煤炭科学技术,2020,48(7):98-108.

    LI Shoubin. Coal industry internet and its key technologies[J]. Coal Science and Technology,2020,48(7):98-108.
    [21]
    申斌学. 基于矿山工业互联网的选煤厂智能管控体系设计与关键技术[J]. 煤炭科学技术,2024,52(9):210-219. DOI: 10.12438/cst.20240873

    SHEN Binxue. Design and key technology of intelligent management and control system for coal preparation plant based on mining industry internet[J]. Coal Science and Technology,2024,52(9):210-219. DOI: 10.12438/cst.20240873
    [22]
    张建中,郭军. 智慧矿山工业互联网技术架构探讨[J]. 煤炭科学技术,2022,50(5):238-246.

    ZHANG Jianzhong,GUO Jun. Discussion on industrial internet technology framework of smart mine[J]. Coal Science and Technology,2022,50(5):238-246.
    [23]
    谢嘉成,王学文,郝尚清,等. 工业互联网驱动的透明综采工作面运行系统及关键技术[J]. 计算机集成制造系统,2019,25(12):3160-3169.

    XIE Jiacheng,WANG Xuewen,HAO Shangqing,et al. Operating system and key technologies of transparent fully mechanized mining face driven by industrial Internet[J]. Computer Integrated Manufacturing Systems,2019,25(12):3160-3169.
    [24]
    周鑫,周云成,金树军,等. 煤炭工业互联网标识解析二级节点系统架构研究[J]. 煤矿安全,2022,53(3):140-145.

    ZHOU Xin,ZHOU Yuncheng,JIN Shujun,et al. Research on secondary node system architecture of coal industry internet identity resolution[J]. Safety in Coal Mines,2022,53(3):140-145.
  • Related Articles

    [1]QIAO Jiawei, TIAN Muqin. Health condition assessment of centrifugal pump based on AHP-TOPSIS comprehensive evaluation method[J]. Journal of Mine Automation, 2022, 48(9): 69-76. DOI: 10.13272/j.issn.1671-251x.17984
    [2]REN Zihui, CHEN Zepeng, WU Xinzhong, QIAN Xiaoyu, LI Ang. Research on health evaluation of mine ventilation system[J]. Journal of Mine Automation, 2021, 47(9): 70-76.. DOI: 10.13272/j.issn.1671-251x.2020120047
    [3]HOU Gang. Research on evaluation model of comprehensive condition for mine-used hydraulic support[J]. Journal of Mine Automation, 2019, 45(2): 96-100. DOI: 10.13272/j.issn.1671-251x.17336
    [4]HE Yaoyi. Discussion on evaluation index system and architecture of smart mine[J]. Journal of Mine Automation, 2017, 43(9): 16-20. DOI: 10.13272/j.issn.1671-251x.2017.09.003
    [5]CHENG Lei, ZHENG Xiaopeng, WANG Dongdong. Determination of evaluation indexes of ventilation effect and their membership functions of working face with high volume fraction gas[J]. Journal of Mine Automation, 2014, 40(8): 10-14. DOI: 10.13272/j.issn.1671-251x.2014.08.003
    [6]DU Dawen, WANG Baomin, ZHANG Ji. Application of fuzzy comprehensive evaluation method in coal mine "six systems"[J]. Journal of Mine Automation, 2014, 40(4): 42-45. DOI: 10.13272/j.issn.1671-251x.2014.04.010
    [7]WU Kaixing, JIA Mingcan, ZHANG Huimi. Grey correlation analysis of coal mine safety evaluation index system based on 4M-C-I[J]. Journal of Mine Automation, 2014, 40(2): 84-87. DOI: 10.13272/j.issn.1671-251x.2014.02.022
    [8]ZHU Zheju. Evaluation model of information service capability of coal enterprise[J]. Journal of Mine Automation, 2014, 40(1): 54-58. DOI: 10.13272/j.issn.1671-251x.2014.01.015
    [9]ZOU Yi-huai, JIANG Cheng-yu, LI Chun-hui, SU Heng-yu. Evaluation of Coal Mine Safety Production Based on AHP and Fuzzy Mathematics[J]. Journal of Mine Automation, 2010, 36(10): 39-41.
    [10]YUAN Mei, ZHANG Yi-ping, WANG Zuo-qiang. Safety Standardization Evaluation System of Tailing Reservoir Based on Analytical Hierarchy Process[J]. Journal of Mine Automation, 2010, 36(1): 52-55.
  • Cited by

    Periodical cited type(5)

    1. 陈盈宜,潘丽敏,叶勇,李君,黄光文. 基于SVM算法的超声波速度-土壤含水率估计模型. 华中农业大学学报. 2024(02): 247-253 .
    2. 韩世礼,肖健,柳位. 机器学习在地球物理勘探中铀矿资源勘查的应用研究进展. 铀矿地质. 2024(03): 555-564 .
    3. 魏礼鹏,鹿伟强,于铄航,陈雯雅,张珂. 基于SA-PSO的煤矿小功率电机故障诊断研究. 煤矿机械. 2024(07): 174-176 .
    4. 宋成林,黄晓冉,邢帅,芦楠楠. 基于隐半马尔可夫模型的微震信号分割方法. 中国科技论文. 2024(08): 868-876 .
    5. 王志坚,芦盛亮,李钢,查颖,蔡宏伟,韩大永. 基于现场矿压显现的微震预警指标研究. 煤炭与化工. 2023(06): 82-84+88 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (24) PDF downloads (4) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return