LI Libao, YUAN Yong, QIN Zhenghan, et al. Research on coal-gangue identification technology driven by multi-source fusion of image features and vibration spectrum[J]. Journal of Mine Automation,2024,50(11):43-51. DOI: 10.13272/j.issn.1671-251x.2024080081
Citation: LI Libao, YUAN Yong, QIN Zhenghan, et al. Research on coal-gangue identification technology driven by multi-source fusion of image features and vibration spectrum[J]. Journal of Mine Automation,2024,50(11):43-51. DOI: 10.13272/j.issn.1671-251x.2024080081

Research on coal-gangue identification technology driven by multi-source fusion of image features and vibration spectrum

More Information
  • Received Date: August 26, 2024
  • Revised Date: November 22, 2024
  • Available Online: October 31, 2024
  • To address the challenges of feature fusion, real-time performance, and model complexity in the application of image and vibration signal fusion for coal-gangue identification, a multi-head attention (MA)-based multi-layer long short-term memory (ML-LSTM) model, i.e., MA-ML-LSTM, was proposed. The variational mode decomposition (VMD) algorithm, optimized by particle swarm optimization (PSO), was employed to process vibration signals. Features such as energy, energy moment, kurtosis, waveform factor, and matrix singular values were extracted. A one-dimensional convolutional network was used to acquire vibration information. For image feature extraction, the fully connected layer of the multi-classification network ResNet-18 was removed, enabling the extraction of deep features from coal-gangue images. Dual-channel feature fusion of images and vibration signals was achieved using the MA mechanism and the ML-LSTM network, enhancing the expression of significant features in each channel. Experimental results demonstrated that the MA-ML-LSTM model achieved an average recognition accuracy of 98.72%, which was 4.60%, 7.96%, 5.37%, and 6.11% higher than traditional single models ResNet, MobilenetV3, 1D-CNN, and LSTM, respectively. Compared to EMD-RF, IMF-SVM, and CSPNet-YOLOv7 models, accuracy improved by 4.18%, 4.45%, and 3.46%, respectively. These findings validate the effectiveness of the coal-gangue identification technology driven by multi-source fusion of image features and vibration spectrum.

  • [1]
    于斌,徐刚,黄志增,等. 特厚煤层智能化综放开采理论与关键技术架构[J]. 煤炭学报,2019,44(1):42-53.

    YU Bin,XU Gang,HUANG Zhizeng,et al. Theory and its key technology framework of intelligentized fully-mechanized caving mining in extremely thick coal seam[J]. Journal of China Coal Society,2019,44(1):42-53.
    [2]
    葛世荣,王世博,管增伦,等. 数字孪生——应对智能化综采工作面技术挑战[J]. 工矿自动化,2022,48(7):1-12.

    GE Shirong,WANG Shibo,GUAN Zenglun,et al. Digital twin:meeting the technical challenges of intelligent fully mechanized working face[J]. Journal of Mine Automation,2022,48(7):1-12.
    [3]
    袁永,屠世浩,陈忠顺,等. 薄煤层智能开采技术研究现状与进展[J]. 煤炭科学技术,2020,48(5):1-17.

    YUAN Yong,TU Shihao,CHEN Zhongshun,et al. Current situation and development of intelligent mining technology for thin coal seams[J]. Coal Science and Technology,2020,48(5):1-17.
    [4]
    田妍,田丰. 放顶煤开采过程煤矸识别技术发展现状及前景[J]. 煤炭工程,2018,50(10):142-145.

    TIAN Yan,TIAN Feng. Development status and prospect of coal gangue recognition technology in top-coal caving[J]. Coal Engineering,2018,50(10):142-145.
    [5]
    沈科,季亮,张袁浩,等. 基于改进YOLOv5s模型的煤矸目标检测[J]. 工矿自动化,2021,47(11):107-111,118.

    SHEN Ke,JI Liang,ZHANG Yuanhao,et al. Research on coal and gangue detection algorithm based on improved YOLOv5s model[J]. Industry and Mine Automation,2021,47(11):107-111,118.
    [6]
    王家臣,潘卫东,张国英,等. 图像识别智能放煤技术原理与应用[J]. 煤炭学报,2022,47(1):87-101.

    WANG Jiachen,PAN Weidong,ZHANG Guoying,et al. Principles and applications of image-based recognition of withdrawn coal and intelligent control of draw opening in longwall top coal caving face[J]. Journal of China Coal Society,2022,47(1):87-101.
    [7]
    袁永,秦正寒,夏永琪,等. 基于改进U−Net的煤矸图像分割模型与放煤控制技术研究 [J/OL]. 煤炭学报:1-18[2024-10-30]. https://doi.org/10.13225/j.cnki.jccs.2024.0588.

    YUAN Yong,QIN Zhenghan,XIA Yongqi,et al. Research on coal gangue image recognition model based on improved U-Net and top coal caving control[J/OL]. Journal of China Coal Society:1-18 [2024-10-30]. https://doi. org/10.13225/j.cnki.jccs.2024.0588.
    [8]
    韦小龙,王方田,何东升,等. 基于CSPNet−YOLOv7目标检测算法的煤矸图像识别模型[J]. 煤炭科学技术,2024,52(增刊1):238-248.

    WEI Xiaolong,WANG Fangtian,HE Dongsheng,et al. Image recognition model of coal gangue based on CSPNet-YOLOv7 target detection algorithm[J]. Coal Science and Technology,2024,52(S1):238-248.
    [9]
    马英. 综放工作面自动化放顶煤系统研究[J]. 煤炭科学技术,2013,41(11):22-24,94.

    MA Ying. Study on automatic top coal caving system in fully-mechanized coal caving face[J]. Coal Science and Technology,2013,41(11):22-24,94.
    [10]
    万丽荣,陈博,杨扬,等. 单颗粒煤岩冲击放顶煤液压支架尾梁动态响应分析[J]. 煤炭学报,2019,44(9):2905-2913.

    WAN Lirong,CHEN Bo,YANG Yang,et al. Dynamic response of single coal-rock impacting tail beam of top coal caving hydraulic support[J]. Journal of China Coal Society,2019,44(9):2905-2913.
    [11]
    万丽荣,尹广俊,杨扬,等. 单颗粒岩石直冲金属板振动特性研究[J]. 煤炭技术,2017,36(11):213-216.

    WAN Lirong,YIN Guangjun,YANG Yang,et al. Study on vibration characteristics of single granular rock direct impact metal plate[J]. Coal Technology,2017,36(11):213-216.
    [12]
    曹贯强,尉瑞,孟祥涛,等. 用于煤矸识别的振动传感器设计[J]. 工矿自动化,2021,47(1):118-122.

    CAO Guanqiang,YU Rui,MENG Xiangtao,et al. Design of vibration sensor for coal gangue identification[J]. Industry and Mine Automation,2021,47(1):118-122.
    [13]
    窦希杰,王世博,刘后广,等. 基于EMD特征提取与随机森林的煤矸识别方法[J]. 工矿自动化,2021,47(3):60-65.

    DOU Xijie,WANG Shibo,LIU Houguang,et al. Coal and gangue identification method based on EMD feature extraction and random forest[J]. Industry and Mine Automation,2021,47(3):60-65.
    [14]
    窦希杰,王世博,谢洋,等. 基于IMF能量矩和SVM的煤矸识别[J]. 振动与冲击,2020,39(24):39-45.

    DOU Xijie,WANG Shibo,XIE Yang,et al. Coal and gangue identification based on IMF energy moment and SVM[J]. Journal of Vibration and Shock,2020,39(24):39-45.
    [15]
    薛光辉,柳二猛,赵新赢,等. 基于声压信号时域特征的综放工作面煤岩性状识别方法研究[J]. 煤炭工程,2015,47(6):119-122.

    XUE Guanghui,LIU Ermeng,ZHAO Xinying,et al. Research of coal-rock character recognition in fully mechanized caving face based on acoustic pressure data time domain feature[J]. Coal Engineering,2015,47(6):119-122.
    [16]
    袁源,汪嘉文,朱德昇,等. 顶煤放落过程煤矸声信号特征提取与分类方法[J]. 矿业科学学报,2021,6(6):711-720.

    YUAN Yuan,WANG Jiawen,ZHU Desheng,et al. Feature extraction and classification method of coal gangue acoustic signal during top coal caving[J]. Journal of Mining Science and Technology,2021,6(6):711-720.
    [17]
    CHEN Xu,WANG Shibo,LIU Houguang,et al. Coal gangue recognition using multichannel auditory spectrogram of hydraulic support sound in convolutional neural network[J]. Measurement Science and Technology,2022,33(1). DOI: 10.1088/1361-6501/ac3709.
    [18]
    张宁波,刘长友,陈现辉,等. 综放煤矸低水平自然射线的涨落规律及测量识别分析[J]. 煤炭学报,2015,40(5):988-993.

    ZHANG Ningbo,LIU Changyou,CHEN Xianhui,et al. Measurement analysis on the fluctuation characteristics of low level natural radiation from gangue[J]. Journal of China Coal Society,2015,40(5):988-993.
    [19]
    ARANDJELOVIC R,ZISSERMAN A. Look,listen and learn[C]. IEEE International Conference on Computer Vision,Venice,2017:609-617.
    [20]
    OWENS A,EFROS A A. Audio-visual scene analysis with self-supervised multisensory features[EB/OL]. [2024-07-10]. https://arxiv.org/abs/1804.03641.
    [21]
    WANG Wupeng,XING Chao,WANG Dong,et al. A robust audio-visual speech enhancement model[C]. IEEE International Conference on Acoustics,Speech and Signal Processing,Barcelona,2020:7529-7533.
    [22]
    张慧春,周子阳,边黎明,等. 基于1DCNN融合多源表型数据的杨树干旱胁迫评估方法[J]. 农业机械学报,2024,55(9):286-296.

    ZHANG Huichun,ZHOU Ziyang,BIAN Liming,et al. Assessment of poplar drought stress level based on 1DCNN fusion of multi-source phenotypic data[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(9):286-296.
    [23]
    徐亮,王晶,杨文镜,等. 基于Conv−TasNet的多特征融合音视频联合语音分离算法[J]. 信号处理,2021,37(10):1799-1805.

    XU Liang,WANG Jing,YANG Wenjing,et al. Multi feature fusion audio-visual joint speech separation algorithm based on Conv-TasNet[J]. Journal of Signal Processing,2021,37(10):1799-1805.
    [24]
    樊凤杰,白洋,纪会芳. 基于EEMD−ICA的脑电去噪算法研究[J]. 计量学报,2021,42(3):395-400.

    FAN Fengjie,BAI Yang,JI Huifang. Denoising method of EEG signal based on EEMD-ICA[J]. Acta Metrologica Sinica,2021,42(3):395-400.
    [25]
    VASWANI A,SHAZEER N M,PARMAR N,et al. Attention is all you need[EB/OL]. [2024-07-10]. https://arxiv.org/abs/1706.03762.
    [26]
    HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997,9:1735-1780. DOI: 10.1162/neco.1997.9.8.1735
    [27]
    YANG Fan,SANG Yongsheng,LYU Jiancheng,et al. Prediction of gasoline yield in fluid catalytic cracking based on multiple level LSTM[J]. Chemical Engineering Research and Design,2022,185:119-129. DOI: 10.1016/j.cherd.2022.06.040
    [28]
    邢致恺,何怡刚,姚其新. 基于多模态信息融合的变压器在线故障诊断方法[J]. 电子测量与仪器学报,2024,38(9):95-103.

    XING Zhikai,HE Yigang,YAO Qixin. Transformer online fault diagnosis method based on multi-modal information fusion[J]. Journal of Electronic Measurement and Instrumentation,2024,38(9):95-103.
    [29]
    兰名扬,刘宇龙,金涛,等. 基于可视化轨迹圆和ResNet18的复合电能质量扰动类型识别[J]. 中国电机工程学报,2022,42(17):6274-6286.

    LAN Mingyang,LIU Yulong,JIN Tao,et al. An improved recognition method based on visual trajectory circle and ResnetN18 for complex power quality disturbances[J]. Proceedings of the CSEE,2022,42(17):6274-6286.
    [30]
    HOWARD A,SANDLER M,CHU G,et al. Searching for MobileNetV3[EB/OL]. [2024-07-10]. https://arxiv.org/abs/1905.02244.
    [31]
    KIRANYAZ S,AVCI O,ABDELJABER O,et al. 1D convolutional neural networks and applications:a survey[J]. Mechanical Systems and Signal Processing,2021,151. DOI:10.1016/j. ymssp.2020.107398.
  • Related Articles

    [1]LI Yuncheng, LIANG Yongzhi, JIA Wenpei, RONG Xingfu. Research progress of improving anti-interference ability and precision of infrared gas sensor[J]. Journal of Mine Automation, 2015, 41(3): 42-46. DOI: 10.13272/j.issn.1671-251x.2015.03.011
    [2]YAN Gangfeng, FANG Hong, YANG Wei, GUO Bing. Discussion on circuit design for reducing coupling degree of interference source[J]. Journal of Mine Automation, 2014, 40(5): 22-26. DOI: 10.13272/j.issn.1671-251x.2014.05.006
    [3]LIAO Zhi-qiang, CHEN Dong-chun, LIU Shui-wen. Research of Underground Electromagnetic Interference Sources and Anti-interference Technology[J]. Journal of Mine Automation, 2012, 38(7): 25-28.
    [4]HUANG Qin-lu, HUANG Jun, HUANG Feng-jiang. Analysis of Anti-interference Technology of Industrial Automatic Control System[J]. Journal of Mine Automation, 2012, 38(5): 39-41.
    [5]YU Yong-jie. Grounding and Anti-interference Technology in Information Network Room[J]. Journal of Mine Automation, 2011, 37(11): 92-94.
    [6]ZHANG Yuan-zheng, WANG Yu, LV-Qing-song, YANG Ming-rong, ZHUO Jing-li. Development of an On-off Sensor with Anti-interference[J]. Journal of Mine Automation, 2010, 36(11): 12-15.
    [7]BU Ling-chen, SHI Li-ping, FAN Li-li. Anti-interference Measures of Intelligent Integrated Protector Used in Mine[J]. Journal of Mine Automation, 2010, 36(3): 107-110.
    [8]WANG Jie, JIANG Shu-guang, SHAO Hao, WANG Kai, WU Hai-wei, CHEN Yue-qi. Application of Anti-interference Technology in Measurement and Control System of Sing-chip Microcomputer of Coal Mine[J]. Journal of Mine Automation, 2009, 35(12): 82-84.
    [9]CAO Yan-jing, FANG Yong-li, ZHANG Xu-long. Research of Anti-interference Performance of Matrix Converter Based on Double-voltage Synthesis[J]. Journal of Mine Automation, 2009, 35(7): 51-54.
    [10]ZHOU Li, LU Shi-kui. Practical Circuits of Anti-interference and Cutting off Protection Based on Single-chip Computer[J]. Journal of Mine Automation, 2001, 27(4): 48-49.
  • Cited by

    Periodical cited type(11)

    1. 张峰华. 安全监控系统在煤矿瓦斯事故预警中的应用与分析. 能源与节能. 2022(02): 212-213 .
    2. 段海亮,吴海旭. 煤矿安全监控系统现场运行维护. 陕西煤炭. 2022(04): 202-205 .
    3. 何云文. 矿井瓦斯涌出风险态势分析平台研究. 能源与环保. 2021(03): 173-177 .
    4. 廖巍. 蒋家河煤矿瓦斯灾害预警系统研发. 煤炭技术. 2021(11): 128-131 .
    5. 徐礼金. 基于云计算的瓦斯安全预警系统设计. 煤炭技术. 2021(12): 205-207 .
    6. 温知强. 矿井安全监控技术与系统. 煤矿现代化. 2020(01): 45-47 .
    7. 崔明浩. 矿井安全监控技术与系统探究. 科技创新与应用. 2020(35): 127-128 .
    8. 周颖. KJ2000N安全监控系统瓦斯误报原因分析及防范措施. 科学技术创新. 2019(25): 40-41 .
    9. 裴韶华,高岩,刘硕. 基于因子分析法构建龙泉煤矿4202工作面多级瓦斯预警模型. 山东煤炭科技. 2019(10): 92-93+97 .
    10. 张翼. 煤矿安全监控系统联网平台设计. 能源与环保. 2019(12): 33-37 .
    11. 岳学伟. 煤矿掘进过程中的安全管理探讨. 城市建设理论研究(电子版). 2018(26): 92-93 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (341) PDF downloads (26) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return