Citation: | GU Yanan, LI Qing, LIU Chenchen, et al. Image clarification algorithm for underground dust and mist based on enhanced grid network[J]. Journal of Mine Automation,2024,50(10):120-127, 159. DOI: 10.13272/j.issn.1671-251x.2024070036 |
[1] |
张立. 矿山数字化转型与智能化管理[J]. 世界有色金属,2023(12):232-234. DOI: 10.3969/j.issn.1002-5065.2023.12.075
ZHANG Li. Digital transformation and intelligent management of mines[J]. World Nonferrous Metals,2023(12):232-234. DOI: 10.3969/j.issn.1002-5065.2023.12.075
|
[2] |
GU Yanan,GAO Yiming,LIU Hairong,et al. Multi-directional rain streak removal based on infimal convolution of oscillation TGV[J]. Neurocomputing,2022,486:61-76. DOI: 10.1016/j.neucom.2022.02.059
|
[3] |
王道累,张天宇. 图像去雾算法的综述及分析[J]. 图学学报,2020,41(6):861-870.
WANG Daolei,ZHANG Tianyu. Review and analysis of image defogging algorithm[J]. Journal of Graphics,2020,41(6):861-870.
|
[4] |
郑凤仙,王夏黎,何丹丹,等. 单幅图像去雾算法研究综述[J]. 计算机工程与应用,2022,58(3):1-14. DOI: 10.3778/j.issn.1002-8331.2106-0134
ZHENG Fengxian,WANG Xiali,HE Dandan,et al. Survey of single image defogging algorithm[J]. Computer Engineering and Applications,2022,58(3):1-14. DOI: 10.3778/j.issn.1002-8331.2106-0134
|
[5] |
涂毅晗,汪普庆. 基于多尺度局部直方图均衡化的矿井图像增强方法[J]. 工矿自动化,2023,49(8):94-99.
TU Yihan,WANG Puqing. Mine image enhancement method based on multi-scale local histogram equalization[J]. Journal of Mine Automation,2023,49(8):94-99.
|
[6] |
胡明宇,陈小桥,谢银波. 宽波段微型光谱仪的小波奇异值差分去噪[J]. 武汉大学学报(工学版),2021,54(3):269-276.
HU Mingyu,CHEN Xiaoqiao,XIE Yinbo. Wavelet singular value difference de-noising for broadband micro spectrometer[J]. Engineering Journal of Wuhan University,2021,54(3):269-276.
|
[7] |
徐勤功,郭杜杜. 基于Retinex理论的暗光图像增强算法[J]. 中国科技论文,2023,18(11):1267-1274. DOI: 10.3969/j.issn.2095-2783.2023.11.015
XU Qingong,GUO Dudu. Low light image enhancement algorithm based on Retinex theory[J]. China Sciencepaper,2023,18(11):1267-1274. DOI: 10.3969/j.issn.2095-2783.2023.11.015
|
[8] |
谢伟,余瑾,涂志刚,等. 消除光晕效应和保持细节信息的图像快速去雾算法[J]. 计算机应用研究,2019,36(4):1228-1231.
XIE Wei,YU Jin,TU Zhigang,et al. Fast algorithm for image defogging by eliminating halo effect and preserving details[J]. Application Research of Computers,2019,36(4):1228-1231.
|
[9] |
闫新宇. 基于物理模型的图像去雾算法研究[D]. 北京:北京交通大学,2021:8-14.
YAN Xinyu. Research of image dehazing algorithm based on physical model[D]. Beijing:Beijing Jiaotong University,2021:8-14.
|
[10] |
王媛彬,韦思雄,段誉,等. 基于自适应双通道先验的煤矿井下图像去雾算法[J]. 工矿自动化,2022,48(5):46-51,84.
WANG Yuanbin,WEI Sixiong,DUAN Yu,et al. Defogging algorithm of underground coal mine image based on adaptive dual-channel prior[J]. Journal of Mine Automation,2022,48(5):46-51,84.
|
[11] |
黄鹤,胡凯益,郭璐,等. 改进的海雾图像去除方法[J]. 哈尔滨工业大学学报,2021,53(8):81-91. DOI: 10.11918/202008105
HUANG He,HU Kaiyi,GUO Lu,et al. Improved defogging algorithm for sea fog[J]. Journal of Harbin Institute of Technology,2021,53(8):81-91. DOI: 10.11918/202008105
|
[12] |
HE Kaiming,SUN Jian,TANG Xiao'ou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(12):2341-2353. DOI: 10.1109/TPAMI.2010.168
|
[13] |
LIU Jianlei,YU Hao,ZHANG Zhongzheng,et al. Deep multi-scale network for single image dehazing with self-guided maps[J]. Signal,Image and Video Processing,2023,17(6):2867-2875. DOI: 10.1007/s11760-023-02505-2
|
[14] |
CHEN Zixuan,HE Zewei,LU Zheming. DEA-net:single image dehazing based on detail-enhanced convolution and content-guided attention[J]. IEEE Transactions on Image Processing,2024,33:1002-1015. DOI: 10.1109/TIP.2024.3354108
|
[15] |
YANG Yizhong,HOU Ce,HUANG Haixia,et al. Cascaded deep residual learning network for single image dehazing[J]. Multimedia Systems,2023,29(4):2037-2048. DOI: 10.1007/s00530-023-01087-w
|
[16] |
WANG Zhendong,CUN Xiaodong,BAO Jianmin,et al. Uformer:a general U-shaped transformer for image restoration[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,New Orleans,2022:17662-17672.
|
[17] |
王满利,张航,李佳悦,等. 基于深度神经网络的煤矿井下低光照图像增强算法[J]. 煤炭科学技术,2023,51(9):231-241. DOI: 10.12438/cst.2022-1626
WANG Manli,ZHANG Hang,LI Jiayue,et al. Deep neural network-based image enhancement algorithm for low-illumination images underground coal mines[J]. Coal Science and Technology,2023,51(9):231-241. DOI: 10.12438/cst.2022-1626
|
[18] |
FOURURE D,EMONET R,FROMONT E,et al. Residual conv-deconv grid network for semantic segmentation[EB/OL]. [2024-06-10]. https://arxiv.org/abs/1707.07958v2.
|
[19] |
HU Jie,SHEN Li,SUN Gang. Squeeze-and- excitation networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:7132-7141.
|
[20] |
LI Boyi,PENG Xiulian,WANG Zhangyang,et al. AOD-net:all-in-one dehazing network[C]. IEEE International Conference on Computer Vision,Venice,2017:4780-4788.
|
[21] |
CAI Bolun,XU Xiangmin,JIA Kui,et al. DehazeNet:an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing,2016,25(11):5187-5198. DOI: 10.1109/TIP.2016.2598681
|
[22] |
LIU Xiaohong,MA Yongrui,SHI Zhihao,et al. GridDehazeNet:attention-based multi-scale network for image dehazing[C]. IEEE/CVF International Conference on Computer Vision,Seoul,2019:7313-7322.
|
[23] |
REN Wenqi,MA Lin,ZHANG Jiawei,et al. Gated fusion network for single image dehazing[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:3253-3261.
|
[24] |
REN Wenqi,LIU Si,ZHANG Hua,et al. Single Image Dehazing via Multi-scale Convolutional Neural Networks[C]. European Conference on Computer Vision,Munich,2016:154-169.
|