GU Yanan, LI Qing, LIU Chenchen, et al. Image clarification algorithm for underground dust and mist based on enhanced grid network[J]. Journal of Mine Automation,2024,50(10):120-127, 159. DOI: 10.13272/j.issn.1671-251x.2024070036
Citation: GU Yanan, LI Qing, LIU Chenchen, et al. Image clarification algorithm for underground dust and mist based on enhanced grid network[J]. Journal of Mine Automation,2024,50(10):120-127, 159. DOI: 10.13272/j.issn.1671-251x.2024070036

Image clarification algorithm for underground dust and mist based on enhanced grid network

More Information
  • Received Date: July 09, 2024
  • Revised Date: October 27, 2024
  • Available Online: September 28, 2024
  • To address the issues of dark images, detail loss, and over-enhancement in existing underground dust and mist image clarification algorithms, an image clarification algorithm based on enhanced grid networks was proposed. This algorithm consisted of three parts: a preprocessing module, a backbone module, and an output module. The preprocessing module generated a set of feature maps using the feature extraction module IRDB, which served as the input for the backbone module. The IRDB integrated the advantages of the Inception architecture and the Residual Dense Block (RDB), increasing the depth and width of the network under limited resources, thereby enhancing the network's representational ability, generalization capability, and handling of dust and mist at different scales. The backbone module employed a grid network to further extract features at various scales of the image and implemented transformations of feature maps at different scales through upsampling and downsampling. To better capture detailed information in the images, a channel attention mechanism was introduced within the grid network. Experimental results indicated that with 5 IRDB modules, the network model achieved the best Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Naturalness Image Quality Evaluator (NIQE) metrics. Visually, the images processed using the proposed algorithm exhibited richer detail information, more natural colors, and improved clarity and contrast. The PSNR, SSIM, and NIQE values for the images processed by the proposed algorithm on the underground dataset were 23.69, 0.8401, and 8.95, respectively, with a moderate image processing speed, and the overall performance surpassed similar algorithms such as DCP and AOD-Net.
  • [1]
    张立. 矿山数字化转型与智能化管理[J]. 世界有色金属,2023(12):232-234. DOI: 10.3969/j.issn.1002-5065.2023.12.075

    ZHANG Li. Digital transformation and intelligent management of mines[J]. World Nonferrous Metals,2023(12):232-234. DOI: 10.3969/j.issn.1002-5065.2023.12.075
    [2]
    GU Yanan,GAO Yiming,LIU Hairong,et al. Multi-directional rain streak removal based on infimal convolution of oscillation TGV[J]. Neurocomputing,2022,486:61-76. DOI: 10.1016/j.neucom.2022.02.059
    [3]
    王道累,张天宇. 图像去雾算法的综述及分析[J]. 图学学报,2020,41(6):861-870.

    WANG Daolei,ZHANG Tianyu. Review and analysis of image defogging algorithm[J]. Journal of Graphics,2020,41(6):861-870.
    [4]
    郑凤仙,王夏黎,何丹丹,等. 单幅图像去雾算法研究综述[J]. 计算机工程与应用,2022,58(3):1-14. DOI: 10.3778/j.issn.1002-8331.2106-0134

    ZHENG Fengxian,WANG Xiali,HE Dandan,et al. Survey of single image defogging algorithm[J]. Computer Engineering and Applications,2022,58(3):1-14. DOI: 10.3778/j.issn.1002-8331.2106-0134
    [5]
    涂毅晗,汪普庆. 基于多尺度局部直方图均衡化的矿井图像增强方法[J]. 工矿自动化,2023,49(8):94-99.

    TU Yihan,WANG Puqing. Mine image enhancement method based on multi-scale local histogram equalization[J]. Journal of Mine Automation,2023,49(8):94-99.
    [6]
    胡明宇,陈小桥,谢银波. 宽波段微型光谱仪的小波奇异值差分去噪[J]. 武汉大学学报(工学版),2021,54(3):269-276.

    HU Mingyu,CHEN Xiaoqiao,XIE Yinbo. Wavelet singular value difference de-noising for broadband micro spectrometer[J]. Engineering Journal of Wuhan University,2021,54(3):269-276.
    [7]
    徐勤功,郭杜杜. 基于Retinex理论的暗光图像增强算法[J]. 中国科技论文,2023,18(11):1267-1274. DOI: 10.3969/j.issn.2095-2783.2023.11.015

    XU Qingong,GUO Dudu. Low light image enhancement algorithm based on Retinex theory[J]. China Sciencepaper,2023,18(11):1267-1274. DOI: 10.3969/j.issn.2095-2783.2023.11.015
    [8]
    谢伟,余瑾,涂志刚,等. 消除光晕效应和保持细节信息的图像快速去雾算法[J]. 计算机应用研究,2019,36(4):1228-1231.

    XIE Wei,YU Jin,TU Zhigang,et al. Fast algorithm for image defogging by eliminating halo effect and preserving details[J]. Application Research of Computers,2019,36(4):1228-1231.
    [9]
    闫新宇. 基于物理模型的图像去雾算法研究[D]. 北京:北京交通大学,2021:8-14.

    YAN Xinyu. Research of image dehazing algorithm based on physical model[D]. Beijing:Beijing Jiaotong University,2021:8-14.
    [10]
    王媛彬,韦思雄,段誉,等. 基于自适应双通道先验的煤矿井下图像去雾算法[J]. 工矿自动化,2022,48(5):46-51,84.

    WANG Yuanbin,WEI Sixiong,DUAN Yu,et al. Defogging algorithm of underground coal mine image based on adaptive dual-channel prior[J]. Journal of Mine Automation,2022,48(5):46-51,84.
    [11]
    黄鹤,胡凯益,郭璐,等. 改进的海雾图像去除方法[J]. 哈尔滨工业大学学报,2021,53(8):81-91. DOI: 10.11918/202008105

    HUANG He,HU Kaiyi,GUO Lu,et al. Improved defogging algorithm for sea fog[J]. Journal of Harbin Institute of Technology,2021,53(8):81-91. DOI: 10.11918/202008105
    [12]
    HE Kaiming,SUN Jian,TANG Xiao'ou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(12):2341-2353. DOI: 10.1109/TPAMI.2010.168
    [13]
    LIU Jianlei,YU Hao,ZHANG Zhongzheng,et al. Deep multi-scale network for single image dehazing with self-guided maps[J]. Signal,Image and Video Processing,2023,17(6):2867-2875. DOI: 10.1007/s11760-023-02505-2
    [14]
    CHEN Zixuan,HE Zewei,LU Zheming. DEA-net:single image dehazing based on detail-enhanced convolution and content-guided attention[J]. IEEE Transactions on Image Processing,2024,33:1002-1015. DOI: 10.1109/TIP.2024.3354108
    [15]
    YANG Yizhong,HOU Ce,HUANG Haixia,et al. Cascaded deep residual learning network for single image dehazing[J]. Multimedia Systems,2023,29(4):2037-2048. DOI: 10.1007/s00530-023-01087-w
    [16]
    WANG Zhendong,CUN Xiaodong,BAO Jianmin,et al. Uformer:a general U-shaped transformer for image restoration[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,New Orleans,2022:17662-17672.
    [17]
    王满利,张航,李佳悦,等. 基于深度神经网络的煤矿井下低光照图像增强算法[J]. 煤炭科学技术,2023,51(9):231-241. DOI: 10.12438/cst.2022-1626

    WANG Manli,ZHANG Hang,LI Jiayue,et al. Deep neural network-based image enhancement algorithm for low-illumination images underground coal mines[J]. Coal Science and Technology,2023,51(9):231-241. DOI: 10.12438/cst.2022-1626
    [18]
    FOURURE D,EMONET R,FROMONT E,et al. Residual conv-deconv grid network for semantic segmentation[EB/OL]. [2024-06-10]. https://arxiv.org/abs/1707.07958v2.
    [19]
    HU Jie,SHEN Li,SUN Gang. Squeeze-and- excitation networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:7132-7141.
    [20]
    LI Boyi,PENG Xiulian,WANG Zhangyang,et al. AOD-net:all-in-one dehazing network[C]. IEEE International Conference on Computer Vision,Venice,2017:4780-4788.
    [21]
    CAI Bolun,XU Xiangmin,JIA Kui,et al. DehazeNet:an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing,2016,25(11):5187-5198. DOI: 10.1109/TIP.2016.2598681
    [22]
    LIU Xiaohong,MA Yongrui,SHI Zhihao,et al. GridDehazeNet:attention-based multi-scale network for image dehazing[C]. IEEE/CVF International Conference on Computer Vision,Seoul,2019:7313-7322.
    [23]
    REN Wenqi,MA Lin,ZHANG Jiawei,et al. Gated fusion network for single image dehazing[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:3253-3261.
    [24]
    REN Wenqi,LIU Si,ZHANG Hua,et al. Single Image Dehazing via Multi-scale Convolutional Neural Networks[C]. European Conference on Computer Vision,Munich,2016:154-169.
  • Related Articles

    [1]LI Dianze, XU Huajie, ZHANG Bo. Rock fracture type recognition based on deep feature learning of microseismic signals[J]. Journal of Mine Automation, 2025, 51(3): 156-164. DOI: 10.13272/j.issn.1671-251x.2024080043
    [2]LIU Pengnan, LI Long, ZHANG Zihao, ZHU Xingguang, CHENG Deqiang. Super resolution reconstruction of noisy images based on dense residual connected U-shaped networks[J]. Journal of Mine Automation, 2024, 50(2): 63-71. DOI: 10.13272/j.issn.1671-251x.2023080098
    [3]ZHANG Xuhui, YAN Jianxing, ZHANG Chao, WAN Jicheng, WANG Lixin, HU Chengjun, WANG Li, WANG Dong. Coal block abnormal behavior identification based on improved YOLOv5s + DeepSORT[J]. Journal of Mine Automation, 2022, 48(6): 77-86, 117. DOI: 10.13272/j.issn.1671-251x.17915
    [4]ZHANG Mingzhen. Underground pedestrian detection model based on Dense-YOLO network[J]. Journal of Mine Automation, 2022, 48(3): 86-90. DOI: 10.13272/j.issn.1671-251x.17861
    [5]YE Ou, DOU Xiaoyi, FU Yan, DENG Jun. Coal block detection method integrating lightweight network and dual attention mechanism[J]. Journal of Mine Automation, 2021, 47(12): 75-80. DOI: 10.13272/j.issn.1671-251x.2021030075
    [6]ZHU Chao, WANG Hao. Particle size change of solid residue and flammability analysis of gaseous residue of lignite coal dust explosio[J]. Journal of Mine Automation, 2021, 47(8): 69-76. DOI: 10.13272/j.issn.1671-251x.2021040040
    [7]LI Changwen, CHENG Zeyin, ZHANG Xiaogang, DING Hua. Fault diagnosis of shearer rocker gear based on deep residual network[J]. Journal of Mine Automation, 2021, 47(3): 71-78. DOI: 10.13272/j.issn.1671-251x.2020110043
    [8]DU Jingyi, HAO Le, WANG Yueyang, YANG Ruonan, WEN Jingyi. A detection method for large blocks in underground coal transportation[J]. Journal of Mine Automation, 2020, 46(5): 63-68. DOI: 10.13272/j.issn.1671-251x.2019090067
    [9]MA Hailong. Bearing residual life prediction based on principal component feature fusion and SVM[J]. Journal of Mine Automation, 2019, 45(8): 74-78. DOI: 10.13272/j.issn.1671-251x.2019010085
    [10]HUANG Yu, ZHANG Yingjun, PAN Lihu. Otherness feature extraction method for underground image based on Shearlet transform[J]. Journal of Mine Automation, 2016, 42(3): 64-68. DOI: 10.13272/j.issn.1671-251x.2016.03.015
  • Cited by

    Periodical cited type(9)

    1. 高翼飞,张晓航,畅明,葛帅帅,陈伟. 基于时空图卷积网络的瓦斯体积分数预警效果研究. 中国安全生产科学技术. 2024(01): 58-64 .
    2. 张玲,杨超宇. 基于注意力机制的ResNet-LSTM煤矿瓦斯浓度预测模型. 煤炭技术. 2024(08): 208-213 .
    3. 朱艺轩. 基于机器学习的成都市空气质量预测. 信息记录材料. 2024(07): 160-162 .
    4. 殷建华,戴冠正,丁宁,辛晓钢,张谦,杜荣华. 基于STL-Informer-BiLSTM-XGB模型的供热负荷预测. 科学技术与工程. 2024(21): 8942-8949 .
    5. 胡青松,郑硕,李世银,孙彦景. 基于改进TCN-TimeGAN的矿井瓦斯浓度智能预测方法. 煤炭科学技术. 2024(S2): 321-330 .
    6. 李洪晨,张志强. 全国国民图书阅读率会超过60%吗?——基于ARIMA模型的全国国民阅读调查预测研究. 图书情报工作. 2023(09): 72-80 .
    7. 金秀章,陈佳政,李阳峰. 基于ARIMA-OSELM的火电厂SCR入口NO_x浓度预测建模研究. 计量学报. 2023(09): 1458-1466 .
    8. 曹梅,杨超宇. 基于小波的CNN-LSTM-Attention瓦斯预测模型研究. 中国安全生产科学技术. 2023(09): 69-75 .
    9. 曹梅,杨超宇. 基于双向长短期记忆网络的煤矿瓦斯浓度预测. 绥化学院学报. 2023(12): 156-160 .

    Other cited types(12)

Catalog

    Article Metrics

    Article views (114) PDF downloads (19) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return