PAN Guoyu, BAO Jiusheng, HU Deping, et al. Research on lateral-longitudinal coordinated control of unmanned dump trucks in open-pit mine[J]. Journal of Mine Automation,2024,50(10):68-79. DOI: 10.13272/j.issn.1671-251x.2024070017
Citation: PAN Guoyu, BAO Jiusheng, HU Deping, et al. Research on lateral-longitudinal coordinated control of unmanned dump trucks in open-pit mine[J]. Journal of Mine Automation,2024,50(10):68-79. DOI: 10.13272/j.issn.1671-251x.2024070017

Research on lateral-longitudinal coordinated control of unmanned dump trucks in open-pit mine

More Information
  • Received Date: July 04, 2024
  • Revised Date: October 30, 2024
  • Available Online: November 07, 2024
  • Open-pit mine unmanned dump trucks face harsh transportation conditions, such as low-grade roads with numerous ramps and curves, as well as heavy and highly variable loads. Most existing vehicle motion control strategies are designed for conventional road environments, making them unsuitable for direct application to mine dump trucks. To address these issues, a lateral-longitudinal coordinated control system based on preview error and layered feedback was proposed for unmanned open-pit mine dump trucks. The lateral control was based on a linear quadratic regulator (LQR) and employed a feedforward controller to reduce steady-state errors, while a fuzzy controller was used to adaptively adjust the preview distance, thereby improving path tracking accuracy. The longitudinal control established a layered feedback longitudinal speed controller, which used model predictive control and fuzzy proportional-integral-differential (PID) feedback control. In addition, an inverse model for vehicle driving and braking was established to minimize the impact of load and road gradient changes on longitudinal speed tracking. Simulation results indicated that: ① The error between the actual speed and the desired speed was within 2%, demonstrating that the speed tracking performance of the dump truck could meet requirements under both empty downhill and fully loaded uphill conditions. ② Due to the lateral-longitudinal coordinated control’s ability to adjust vehicle speed in real time based on varying road curvature, the coordinated controller achieved higher path tracking accuracy compared to single lateral control in both operating conditions, while also enhancing vehicle maneuverability and stability. Laboratory test results showed that: ① The peak lateral error during empty downhill runs was 0.0199 m, and the peak direction error was 0.1840 rad. Both errors increased at curves, but their fluctuations were minimal, ensuring that the test vehicle effectively tracked the desired path. ② During loaded uphill runs, the peak lateral error was 0.0168 m, and the peak direction error was 0.0714 rad. The error trends were opposite to those observed in empty downhill tests, but the errors remained within acceptable limits, resulting in good path tracking performance. ③ Both peak errors were lower compared to those in empty downhill tests, which validated the effect of varying speeds on lateral control accuracy.
  • [1]
    NEBOT E M. Surface mining:main research issues for autonomous operations[M]. Heidelberg:Springer Berlin Heidelberg,2007:268-280.
    [2]
    钱建生,胡青松. 智能煤矿建设路线与工程实践[J]. 煤炭科学技术,2020,48(7):109-117.

    QIAN Jiansheng,HU Qingsong. Construction routes and practice of intelligent coal mine[J]. Coal Science and Technology,2020,48(7):109-117.
    [3]
    鲍久圣,刘琴,葛世荣,等. 矿山运输装备智能化技术研究现状及发展趋势[J]. 智能矿山,2020,1(1):78-88.

    BAO Jiusheng,LIU Qin,GE Shirong,et al. Research status and development trend of intelligent technologies for mine transportation equipment[J]. Journal of Intelligent Mine,2020,1(1):78-88.
    [4]
    鲍久圣,张牧野,葛世荣,等. 基于改进A*和人工势场算法的无轨胶轮车井下无人驾驶路径规划[J]. 煤炭学报,2022,47(3):1347-1360.

    BAO Jiusheng,ZHANG Muye,GE Shirong,et al. Underground driverless path planning of trackless rubber tyred vehicle based on improved A* and artificial potential field algorithm[J]. Journal of China Coal Society,2022,47(3):1347-1360.
    [5]
    李庆玲,张慧祥,赵旭阳,等. 露天矿无人驾驶自卸卡车发展综述[J]. 煤炭工程,2021,53(2):29-34.

    LI Qingling,ZHANG Huixiang,ZHAO Xuyang, et al. Overview of unmanned mining trucks in open-pit mine[J]. Coal Engineering,2021,53(2):29-34.
    [6]
    唐传茵,赵懿峰,赵亚峰,等. 智能车辆轨迹跟踪控制方法研究[J]. 东北大学学报(自然科学版),2020,41(9):1297-1303.

    TANG Chuanyin,ZHAO Yifeng,ZHAO Yafeng,et al. Research on the trajectory tracking control method of intelligent vehicles[J]. Journal of Northeastern University (Natural Science),2020,41(9):1297-1303.
    [7]
    闫凌,黄佳德. 矿用卡车无人驾驶系统研究[J]. 工矿自动化,2021,47(4):19-29.

    YAN Ling,HUANG Jiade. Research on unmanned driving system of mine-used truck[J]. Industry and Mine Automation,2021,47(4):19-29.
    [8]
    周琳. 履带车辆路径规划与轨迹跟踪控制方法研究[D]. 长春:吉林大学,2020.

    ZHOU Lin. Research on path planning and trajectory tracking control method of tracked vehicle[D]. Changchun:Jilin University,2020.
    [9]
    ZHOU Hongliang,JIA Fengjiao,JING Houhua,et al. Coordinated longitudinal and lateral motion control for four wheel independent motor-drive electric vehicle[J]. IEEE Transactions on Vehicular Technology,2018,67(5):3782-3790. DOI: 10.1109/TVT.2018.2816936
    [10]
    熊璐,杨兴,卓桂荣,等. 无人驾驶车辆的运动控制发展现状综述[J]. 机械工程学报,2020,56(10):127-143. DOI: 10.3901/JME.2020.10.127

    XIONG Lu,YANG Xing,ZHUO Guirong,et al. Review on motion control of autonomous vehicles[J]. Journal of Mechanical Engineering,2020,56(10):127-143. DOI: 10.3901/JME.2020.10.127
    [11]
    ZIEGLER J,BENDER P,SCHREIBER M,et al. Making bertha drive-an autonomous journey on a historic route[J]. IEEE Intelligent Transportation Systems Magazine,2014,6(2):8-20. DOI: 10.1109/MITS.2014.2306552
    [12]
    XU Shaobing,PENG Huei. Design,analysis,and experiments of preview path tracking control for autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems,2020,21(1):48-58. DOI: 10.1109/TITS.2019.2892926
    [13]
    WANG Jianqiang,ZHANG Lei,ZHANG Dezhao,et al. An adaptive longitudinal driving assistance system based on driver characteristics[J]. IEEE Transactions on Intelligent Transportation Systems,2013,14(1):1-12. DOI: 10.1109/TITS.2012.2205143
    [14]
    ZHU Qi,HUANG Zhenhua,LIU Daxue,et al. An adaptive path tracking method for autonomous land vehicle based on neural dynamic programming[C]. IEEE International Conference on Mechatronics and Automation,Harbin,2016:1429-1434.
    [15]
    谭宇航. 基于MFAPC的智能车辆跟随式自动驾驶纵向加速度控制算法[J]. 汽车实用技术,2023,48(9):59-65.

    TAN Yuhang. Longitudinal acceleration control of intelligent vehicle following autonomous driving based on MFAPC[J]. Automobile Applied Technology,2023,48(9):59-65.
    [16]
    周红梅,胡广地,崔然滔,等. 基于模型预测控制的智能车辆横纵向综合控制研究[J]. 机械,2023,50(6):15-22. DOI: 10.3969/j.issn.1006-0316.2023.06.003

    ZHOU Hongmei,HU Guangdi,CUI Rantao,et al. Longitudinal and lateral integrated control of intelligent vehicle based on model predictive control[J]. Machinery,2023,50(6):15-22. DOI: 10.3969/j.issn.1006-0316.2023.06.003
    [17]
    RAJAMANI R,TAN H S,LAW B K,et al. Demonstration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons[J]. IEEE Transactions on Control Systems Technology,2000,8(4):695-708. DOI: 10.1109/87.852914
    [18]
    邓涛,李鑫. 智能车辆横纵向运动综合控制方法研究[J]. 重庆交通大学学报(自然科学版),2021,40(4):133-140. DOI: 10.3969/j.issn.1674-0696.2021.04.20

    DENG Tao,LI Xin. Combined control method of intelligent vehicle longitudinal and lateral motion[J]. Journal of Chongqing Jiaotong University(Natural Science),2021,40(4):133-140. DOI: 10.3969/j.issn.1674-0696.2021.04.20
    [19]
    郭景华,罗禹贡,李克强. 智能电动车辆横纵向协调与重构控制[J]. 控制理论与应用,2014,31(9):1238-1244. DOI: 10.7641/CTA.2014.30863

    GUO Jinghua,LUO Yugong,LI Keqiang. Cooperative and reconfigurable lateral and longitudinal control of intelligent electric vehicles[J]. Control Theory & Applications,2014,31(9):1238-1244. DOI: 10.7641/CTA.2014.30863
    [20]
    邹学耀. 露天矿无人驾驶自卸车横-纵向协同控制方法研究[D]. 徐州:中国矿业大学,2022.

    ZOU Xueyao. Research on horizontal-vertical cooperative control method of unmanned dump truck in open-pit mine[D]. Xuzhou:China University of Mining and Technology,2022.
    [21]
    王陈,鲍久圣,袁晓明,等. 无轨胶轮车井下无人驾驶系统设计及控制策略研究[J]. 煤炭学报,2021,46(S1):520-528.

    WANG Chen,BAO Jiusheng,YUAN Xiaoming,et al. Design and control strategy of underground driverless system for trackless rubber tire vehicle[J]. Journal of China Coal Society,2021,46(S1):520-528.
    [22]
    余米森,钱玉宝,黄华宝,等. 连续工况下基于PID+LQR算法的自动驾驶车辆横纵向耦合控制[J]. 科学技术与工程,2022,22(30):13490-13496. DOI: 10.3969/j.issn.1671-1815.2022.30.043

    YU Misen,QIAN Yubao,HUANG Huabao,et al. Lateral and longitudinal coupling control of autonomous vehicle based on PID+LQR algorithm under continuous conditions[J]. Science Technology and Engineering,2022,22(30):13490-13496. DOI: 10.3969/j.issn.1671-1815.2022.30.043
  • Related Articles

    [1]ZHANG Xinjie, WANG Jun, SUN Yongkang, XUE Jiangda, BIAN Dezhen. A study on the effective extraction layer of overburden fracture zone in goaf based on key layer theory[J]. Journal of Mine Automation, 2023, 49(12): 102-107, 113. DOI: 10.13272/j.issn.1671-251x.2023040072
    [2]LI Xiaoshen, LIU Ruipeng. Research and application of hydraulic slotting gas extraction technology in coal seams containing gangue[J]. Journal of Mine Automation, 2023, 49(4): 134-140. DOI: 10.13272/j.issn.1671-251x.2022100095
    [3]DU Jinlei, ZHANG Minbo, ZHANG Dianji, ZHANG Dangyu, ZHANG Zhen, CUI Li, WANG Zichao, LI Chunxin, ZHANG Fujian. Hydraulic cutting cooperative pressure relief and permeability enhancement technology in low permeability outburst coal seam[J]. Journal of Mine Automation, 2021, 47(7): 98-105. DOI: 10.13272/j.issn.1671-251x.17698
    [4]LIU Dianping, MA Wenwei. Research on determination method of effective drainage radius of gas drainage borehole[J]. Journal of Mine Automation, 2020, 46(11): 59-64. DOI: 10.13272/j.issn.1671 -251x.2020060058
    [5]GAO Yabin, HAN Peizhuang, GUO Xiaoya, XIANG Xin, WANG Fei. Research on influence characteristics of water jet impact on borehole gas drainage[J]. Journal of Mine Automation, 2020, 46(10): 19-25. DOI: 10.13272/j.issn.1671-251x.17651
    [6]MENG Xiangjun, CHEN Gonghua, RUAN Guoqiang, ZHANG Binbin, GUO Ying. Practice of gas drainage by high-level directional borehole in Qinglong Coal Mine[J]. Journal of Mine Automation, 2019, 45(12): 91-96. DOI: 10.13272/j.issn.1671-251x.2019060073
    [7]YANG Liping. Research on fine design method of pre-drainage zoning borehole on high gas working face[J]. Journal of Mine Automation, 2019, 45(7): 5-9. DOI: 10.13272/j.issn.1671-251x.2019010102
    [8]SANG Naiwen, YANG Shengqiang, SONG Yawei. Research on effective drainage radius and rational borehole spacing of parallel boreholes[J]. Journal of Mine Automation, 2019, 45(6): 58-62. DOI: 10.13272/j.issn.1671-251x.2019010048
    [9]JIAO Rongkun, ZHANG Xuebo, LI Yi. Research on negative pressure distribution laws of drainage borehole with different deformation and instability[J]. Journal of Mine Automation, 2019, 45(5): 40-45. DOI: 10.13272/j.issn.1671-251x.2018070064
    [10]ZHANG Bo, XIE Xionggang, XU Shiqing. Numerical simulation on gas drainage and borehole arrangement parameters of bedding borehole in a coal mine[J]. Journal of Mine Automation, 2018, 44(11): 49-56. DOI: 10.13272/j.issn.1671—251x.2018040049
  • Cited by

    Periodical cited type(11)

    1. 王宝贵. 水力压冲一体化增透抽采瓦斯技术. 工矿自动化. 2024(01): 35-41 . 本站查看
    2. 王安红. 低透气性煤层点式酸化压裂增透技术研究与应用. 能源与节能. 2024(07): 21-23+30 .
    3. 骆家宁,谢雄刚,杨家向,熊欣标,梁海彬,曹文梁. 煤巷条带超高压水力割缝增透试验. 湖南科技大学学报(自然科学版). 2023(01): 19-24 .
    4. 李晓绅,刘瑞鹏. 含夹矸煤层水力割缝瓦斯抽采技术研究及应用. 工矿自动化. 2023(04): 134-140 . 本站查看
    5. 肖家乐,徐家杰,薛鲲. 薛湖煤矿矿井充水主控因素与矿井涌水量预测研究. 能源与环保. 2022(08): 308-314 .
    6. 张晓伟. 斜沟煤矿超高压水力割缝卸压增透最优参数研究. 煤炭与化工. 2022(09): 105-109 .
    7. 李川,吕英华,梁文勖. 超高压水力割缝卸压增透最优参数研究. 煤炭工程. 2022(S1): 111-115 .
    8. 贾男. 低透气性煤层多组分酸化压裂增透技术研究. 矿业安全与环保. 2021(03): 27-32 .
    9. 赵红星,贾男. 低透气性煤层点式酸化压裂增透技术研究与应用. 中国安全生产科学技术. 2021(09): 66-71 .
    10. 李文福,王向阳,付航航,康甲甲,何伟,马涛,李刚. 低渗煤层超高压水射流不同割缝间距的力学特征. 陕西煤炭. 2021(06): 39-43 .
    11. 高亚斌,韩培壮,郭晓亚,向鑫,王飞. 钻孔水射流冲击对瓦斯抽采的影响特性研究. 工矿自动化. 2020(10): 19-25 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (512) PDF downloads (27) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return