ZHANG Liming, LIN Jianyun, SI Leilei, et al. Features of adsorption pore structure in high-rank coal and its influence on methane adsorption capability[J]. Journal of Mine Automation,2024,50(7):147-155. DOI: 10.13272/j.issn.1671-251x.2024040083
Citation: ZHANG Liming, LIN Jianyun, SI Leilei, et al. Features of adsorption pore structure in high-rank coal and its influence on methane adsorption capability[J]. Journal of Mine Automation,2024,50(7):147-155. DOI: 10.13272/j.issn.1671-251x.2024040083

Features of adsorption pore structure in high-rank coal and its influence on methane adsorption capability

More Information
  • Received Date: April 23, 2024
  • Revised Date: July 22, 2024
  • Available Online: July 31, 2024
  • The pore structure has a significant impact on the capability of coal seams to adsorb methane. But there is currently limited research on the features of adsorption pore structure in high-rank coal and its influence on methane adsorption capability. Taking the high-rank coal samples from Nuodong Coal Mine of Guizhou Xing'an Coal Industry Co., Ltd. as the research object, low-temperature N2 adsorption and low-temperature CO2 adsorption experiments are conducted. Combined with fractal theory, this paper studies the pore structure features of high-rank coal adsorption pores. Through high-pressure isothermal methane adsorption experiments, the influence of coal reservoir properties, pore structure features, and fractal dimension on methane adsorption capability is analyzed. The results show the following points. ① The pore morphology of high-rank coal reservoirs is relatively simple, mostly consisting of parallel plate pores and narrow slit pores with open ends. Micro pores dominate the pore structure of coal, with pore volume and pore specific surface area accounting for more than 98%, providing space for gas enrichment. ② The method calculates the comprehensive fractal dimension of high-rank coal pores based on the proportion of pore volume in different aperture segments, with micropore fractal dimension dominating the comprehensive fractal dimension. The pore structure of coal samples has obvious fractal features and strong heterogeneity of pores. ③ The Langmuir model can describe the adsorption behavior of high-rank coal. The physical properties, pore structure, and fractal dimension of coal reservoirs have a significant impact on methane adsorption capability. Langmuir volume is linearly positively correlated with maximum vitrinite reflectance, vitrinite content, ash content, and moisture content. It is linearly negatively correlated with inertinite content. The Langmuir volume is linearly positively correlated with the pore specific surface area and pore volume of the adsorption pores. The Langmuir volume is weakly linearly correlated with the fractal dimension. The research results can provide theoretical guidance for the exploration and development of high-rank coalbed methane and the prevention and control of coal mine methane disasters in southwestern Guizhou.
  • [1]
    徐林,袁梅,杨萌萌,等. 贵州省突出煤层孔隙分形特征研究[J]. 工矿自动化,2017,43(4):32-36.

    XU Lin,YUAN Mei,YANG Mengmeng,et al. Research on pore fractal characteristics of outburst coal seam in Guizhou Province[J]. Industry and Mine Automation,2017,43(4):32-36.
    [2]
    LIU Xiaolei,WEI Jianping,WEI Guoying,et al. Combined control of fluid adsorption capacity and initial permeability on coal permeability[J]. International Journal of Coal Science & Technology,2022,9(1). DOI: 10.1007/s40789-022-00545-6.
    [3]
    贾男. 煤孔隙结构对瓦斯解吸−扩散−渗流过程的影响[J]. 工矿自动化,2024,50(3):122-130.

    JIA Nan. The influence of coal pore structure on gas desorption-diffusion-seepage process[J]. Journal of Mine Automation,2024,50(3):122-130.
    [4]
    桑树勋,韩思杰,刘世奇,等. 高煤阶煤层气富集机理的深化研究[J]. 煤炭学报,2022,47(1):388-403.

    SANG Shuxun,HAN Sijie,LIU Shiqi,et al. Comprehensive study on the enrichment mechanism of coalbed methane in high rank coal reservoirs[J]. Journal of China Coal Society,2022,47(1):388-403.
    [5]
    刘纪坤,任棒,王翠霞. 考虑煤基质压缩效应的煤全孔径分布特征研究[J]. 工矿自动化,2022,48(2):125-130.

    LIU Jikun,REN Bang,WANG Cuixia. Study on coal full pore aperture distribution characteristics considering coal matrix compression effect[J]. Industry and Mine Automation,2022,48(2):125-130.
    [6]
    李树刚,周雨璇,胡彪,等. 低阶煤吸附孔结构特征及其对甲烷吸附性能影响[J]. 煤田地质与勘探,2023,51(2):127-136. DOI: 10.12363/issn.1001-1986.22.09.0743

    LI Shugang,ZHOU Yuxuan,HU Biao,et al. Structural characteristics of adsorption pores in low-rank coals and their effects on methane adsorption performance[J]. Coal Geology & Exploration,2023,51(2):127-136. DOI: 10.12363/issn.1001-1986.22.09.0743
    [7]
    张少锋,李雅阁,秦兴林. 沁水盆地煤储层孔隙分形特征及其对瓦斯吸附的影响[J]. 煤炭科学技术,2019,47(3):163-167.

    ZHANG Shaofeng,LI Yage,QIN Xinglin. Pore fractal characteristic of coal reservoirs in Qinshui Basin and its influence on methane adsorption property[J]. Coal Science and Technology,2019,47(3):163-167.
    [8]
    王俏,王兆丰,代菊花,等. 深部煤层无烟煤甲烷吸附特性研究[J]. 煤矿安全,2021,52(6):28-33.

    WANG Qiao,WANG Zhaofeng,DAI Juhua,et al. Study on methane adsorption characteristics of anthracite in deep coal seam[J]. Safety in Coal Mines,2021,52(6):28-33.
    [9]
    任少魁,秦玉金,贾宗凯,等. 不同煤阶煤孔隙结构分形表征及其对甲烷吸附特性的影响[J]. 煤矿安全,2023,54(5):175-181.

    REN Shaokui,QIN Yujin,JIA Zongkai,et al. Fractal characterization of pore structure of coal with different ranks and its effect on methane adsorption characteristics[J]. Safety in Coal Mines,2023,54(5):175-181.
    [10]
    曾平,张东明,严先华,等. 原生煤和构造煤对甲烷的吸附扩散特性研究[J]. 矿业安全与环保,2023,50(4):36-41.

    ZENG Ping,ZHANG Dongming,YAN Xianhua,et al. Study on gas adsorption and diffusion characteristics of intact coal and tectonic coal[J]. Mining Safety & Environmental Protection,2023,50(4):36-41.
    [11]
    贾永勇,程媛圆,殷紫妤. 不同煤阶煤体甲烷吸附特性的对比分析[J]. 陕西煤炭,2023,42(3):37-42. DOI: 10.3969/j.issn.1671-749X.2023.03.008

    JIA Yongyong,CHENG Yuanyuan,YIN Ziyu. Comparative analysis of methane adsorption characteristics of different coal ranks coal body[J]. Shaanxi Coal,2023,42(3):37-42. DOI: 10.3969/j.issn.1671-749X.2023.03.008
    [12]
    吴旭坤. 构造应力区松软围岩巷道控制技术研究[D]. 贵阳:贵州大学,2021.

    WU Xukun. Study on roadway control technology of soft surrounding rock in structural stress zone[D]. Guiyang:Guizhou University,2021.
    [13]
    翦非帆. 无烟煤孔隙结构对甲烷吸附解吸特征的影响研究[D]. 徐州:中国矿业大学,2021.

    JIAN Feifan. Effect of pore structure of anthracite on adsorption and desorption characteristics of methane[D]. Xuzhou:China University of Mining and Technology,2021.
    [14]
    张鹏,张欣,王昆. 基于低温氮吸附法的商丘地区高阶煤孔隙特征研究[J]. 中国煤炭地质,2023,35(11):39-45. DOI: 10.3969/j.issn.1674-1803.2023.11.06

    ZHANG Peng,ZHANG Xin,WANG Kun. Study on pore characteristics of high rank coal in Shangqiu area based on low-temperature nitrogen adsorption method[J]. Coal Geology of China,2023,35(11):39-45. DOI: 10.3969/j.issn.1674-1803.2023.11.06
    [15]
    LI Yunbo,LIU Wen,SONG Dangyu,et al. Full-scale pore characteristics in coal and their influence on the adsorption capacity of coalbed methane[J]. Environmental Science and Pollution Research,2023,30(28):72187-72206. DOI: 10.1007/s11356-023-27298-2
    [16]
    THOMMES M,KANEKO K,NEIMARK A V,et al. Physisorption of gases,with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry,2015,87(9/10):1051-1069.
    [17]
    ZHAO Junlong,XU Hao,TANG Dazhen,et al. A comparative evaluation of coal specific surface area by CO2 and N2 adsorption and its influence on CH4 adsorption capacity at different pore sizes[J]. Fuel,2016,183:420-431. DOI: 10.1016/j.fuel.2016.06.076
    [18]
    ZHANG Songhang,TANG Shuheng,TANG Dazhen,et al. Determining fractal dimensions of coal pores by FHH model:problems and effects[J]. Journal of Natural Gas Science and Engineering,2014,21:929-939. DOI: 10.1016/j.jngse.2014.10.018
    [19]
    WANG Zhenyang,CHENG Yuanping,QI Yuxiao,et al. Experimental study of pore structure and fractal characteristics of pulverized intact coal and tectonic coal by low temperature nitrogen adsorption[J]. Powder Technology,2019,350:15-25. DOI: 10.1016/j.powtec.2019.03.030
    [20]
    YI Minghao,CHENG Yuanping,WANG Chenghao,et al. Effects of composition changes of coal treated with hydrochloric acid on pore structure and fractal characteristics[J]. Fuel,2021,294. DOI: 10.1016/j.fuel.2021.120506.
    [21]
    SONG Yu,JIANG Bo,LI Fengli,et al. Structure and fractal characteristic of micro- and meso-pores in low,middle-rank tectonic deformed coals by CO2 and N2 adsorption[J]. Microporous and Mesoporous Materials,2017,253:191-202. DOI: 10.1016/j.micromeso.2017.07.009
  • Related Articles

    [1]REN Xiaowei, WANG Xiaokai, QI Longhui, JI Yuan, ZHANG Chaochao, LIU Guozhong. Acoustic emission response and fractal temporal evolution characteristics of coal body damage and failure[J]. Journal of Mine Automation, 2025, 51(3): 165-171. DOI: 10.13272/j.issn.1671-251x.2024080057
    [2]LAN Tianwei, WANG Shunxiang, ZHANG Mancang, LI Zhu, WU Guoqiang, FANG Ping, LU Kaixiang, LIU Yonghao, TANG Xiaofu. Fractal characteristics of mine fracture structures and their impact on rockburst[J]. Journal of Mine Automation, 2024, 50(10): 112-119. DOI: 10.13272/j.issn.1671-251x.2024060092
    [3]GAO Lijun, JIN Fadong, LIANG Dongyu, YANG Wenbin, TANG Yepeng, WANG Tong. Study on the stress distribution of surrounding rock and the inclination effect of gangue filling features in steeply dipping mining sites[J]. Journal of Mine Automation, 2024, 50(3): 142-150. DOI: 10.13272/j.issn.1671-251x.2023100064
    [4]JIA Nan. The influence of coal pore structure on gas desorption-diffusion-seepage process[J]. Journal of Mine Automation, 2024, 50(3): 122-130. DOI: 10.13272/j.issn.1671-251x.2023110076
    [5]LYU Pengfei, LU Kangbin, CAO Shubin, CONG Risheng. Acoustic emission and fragment fractal characteristics of rock burst tendency coal samples under different strain rate loads[J]. Journal of Mine Automation, 2023, 49(1): 123-130, 139. DOI: 10.13272/j.issn.1671-251x.2022050022
    [6]LIU Jikun, REN Bang, WANG Cuixia. Study on coal full pore aperture distribution characteristics considering coal matrix compression effect[J]. Journal of Mine Automation, 2022, 48(2): 125-130. DOI: 10.13272/j.issn.1671-251x.2021060077
    [7]WANG Cuixia, LIU Wei, LIU Jiku. Research on pore structure characteristics of gas coal in Fukang mining area[J]. Journal of Mine Automation, 2019, 45(7): 92-96. DOI: 10.13272/j.issn.1671-251x.2019010062
    [8]ZHOU Wei, YUAN Liang, XUE Junhua, HE Guanghui, LUO Yong, DUAN Changrui, REN Bo. Experimental analysis of isothermal adsorption and desorption characteristics of gas in coal samples with multi grain sizes: A case study on No.3 coal in Sihe Coal Mine[J]. Journal of Mine Automation, 2018, 44(1): 26-30. DOI: 10.13272/j.issn.1671-251x.17277
    [9]XU Lin, YUAN Mei, YANG Mengmeng, XU Shiqing, WANG Yuli, LI Chuang. Research on pore fractal characteristics of outburst coal seam in Guizhou province[J]. Journal of Mine Automation, 2017, 43(4): 32-36. DOI: 10.13272/j.issn.1671-251x.2017.04.008
    [10]ZHANG Hanwen, LIU Jian, ZHANG Miaotian, MENG Guoying. A method of feature selection based on projectio[J]. Journal of Mine Automation, 2014, 40(1): 63-67. DOI: 10.13272/j.issn.1671-251x.2014.01.017
  • Cited by

    Periodical cited type(28)

    1. 冯夷正. 液压支架电液控制系统故障诊断系统的设计研究. 山东煤炭科技. 2024(04): 104-108 .
    2. 刘康,刘卓然,刘瑭. 液压支架电液控制系统故障诊断系统设计研究. 科技创新与应用. 2024(15): 55-58 .
    3. 朱延涛. 基于视频比对算法的溜槽堵塞检测方案研究及应用. 煤炭加工与综合利用. 2023(02): 29-31 .
    4. 申丹. 液压支架电液控制系统故障诊断分析研究. 能源与节能. 2023(03): 164-166 .
    5. 马海燕. 农机电液控制系统的故障表现与维修技术. 农业装备技术. 2023(03): 16-18 .
    6. 高洋. 全工作面液压支架电液控制系统验证装置研究. 矿山机械. 2023(12): 1-7 .
    7. 杨永锴,张敏龙,许春雨,宋建成,田慕琴,宋单阳,张晓海,聂鸿霖. 液压支架电液控制系统总线通信故障检测与诊断方法. 工矿自动化. 2023(12): 70-76 . 本站查看
    8. 王志勇. 液压支架油缸泄漏的主要原因与解决方案研究. 机械管理开发. 2022(01): 269-270+273 .
    9. 宋单阳,宋建成,陶心雅,杨金衡,卢春贵. 具有故障诊断功能的液压支架电液控制器通信系统. 工矿自动化. 2022(05): 100-106 . 本站查看
    10. 史春鹏. 液压支架故障混合智能诊断专家系统设计与实现. 山西焦煤科技. 2022(09): 34-36 .
    11. 李丽,徐小玲. 基于模糊数学的液压支架故障诊断. 煤矿机械. 2021(02): 157-159 .
    12. 杨华芬,陈斌. 大数据框架下基于改进自适应滤波算法的机械故障信号处理. 机床与液压. 2021(02): 175-180 .
    13. 倪涛涛,周剑,曹昆. 门克庆煤矿智能化开采系统设计研究. 煤. 2021(01): 34-39 .
    14. 刘斌. 基于AMESim快速定位液压支架液压系统的故障. 机械管理开发. 2021(02): 85-87 .
    15. 刘力. 基于信号局部均值分解的机械故障诊断研究. 机械设计与制造工程. 2021(06): 117-120 .
    16. 杨洁,宋新成,王崴,马占全. 某装备吊机液压故障诊断专家系统设计. 火力与指挥控制. 2021(09): 155-161 .
    17. 辛亮. 液压支架电液控制系统故障分析及维修技术的应用. 内蒙古石油化工. 2021(10): 78-81 .
    18. 郑沁楠. 液压支架电液控制系统故障快速诊断. 能源与节能. 2020(04): 72-73+118 .
    19. 胡云. 探讨高端液压支架管路系统的优化改造. 机械管理开发. 2020(03): 252-253 .
    20. 孙峰,高红波. 面向大数据新能源拖拉机发动机智能故障监测系统. 农机化研究. 2020(11): 246-250 .
    21. 韩万兵,王浩玉. 采用TwitterStorm技术的船舶机械故障监测大数据分析. 舰船科学技术. 2020(08): 67-69 .
    22. 王玉宏. 基于大数据决策分析的风电机组故障诊断研究. 现代工业经济和信息化. 2020(04): 16-17+28 .
    23. 赵贵能. 集中型馈线自动化在铁路通信中断时的故障处理. 制造业自动化. 2020(05): 133-136 .
    24. 高谦,肖维. 基于T-S模糊神经网络的液压马达故障诊断方法研究. 计算机与数字工程. 2020(12): 3027-3030 .
    25. 杨坤. 液压支架电液控制器设计研究. 自动化应用. 2019(02): 43-44 .
    26. 史洪泉. 液压支架电液控制系统故障快速诊断技术. 自动化应用. 2019(04): 33-34 .
    27. 李海明. 液压支架泄漏故障诊断机理及应用研究. 机械管理开发. 2019(06): 120-121 .
    28. 刘丰军. 基于大数据技术的煤矿应急救援辅助决策系统的研究. 山东煤炭科技. 2019(10): 156-157+163 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (159) PDF downloads (28) Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return