Citation: | ZHANG Liming, LIN Jianyun, SI Leilei, et al. Features of adsorption pore structure in high-rank coal and its influence on methane adsorption capability[J]. Journal of Mine Automation,2024,50(7):147-155. DOI: 10.13272/j.issn.1671-251x.2024040083 |
[1] |
徐林,袁梅,杨萌萌,等. 贵州省突出煤层孔隙分形特征研究[J]. 工矿自动化,2017,43(4):32-36.
XU Lin,YUAN Mei,YANG Mengmeng,et al. Research on pore fractal characteristics of outburst coal seam in Guizhou Province[J]. Industry and Mine Automation,2017,43(4):32-36.
|
[2] |
LIU Xiaolei,WEI Jianping,WEI Guoying,et al. Combined control of fluid adsorption capacity and initial permeability on coal permeability[J]. International Journal of Coal Science & Technology,2022,9(1). DOI: 10.1007/s40789-022-00545-6.
|
[3] |
贾男. 煤孔隙结构对瓦斯解吸−扩散−渗流过程的影响[J]. 工矿自动化,2024,50(3):122-130.
JIA Nan. The influence of coal pore structure on gas desorption-diffusion-seepage process[J]. Journal of Mine Automation,2024,50(3):122-130.
|
[4] |
桑树勋,韩思杰,刘世奇,等. 高煤阶煤层气富集机理的深化研究[J]. 煤炭学报,2022,47(1):388-403.
SANG Shuxun,HAN Sijie,LIU Shiqi,et al. Comprehensive study on the enrichment mechanism of coalbed methane in high rank coal reservoirs[J]. Journal of China Coal Society,2022,47(1):388-403.
|
[5] |
刘纪坤,任棒,王翠霞. 考虑煤基质压缩效应的煤全孔径分布特征研究[J]. 工矿自动化,2022,48(2):125-130.
LIU Jikun,REN Bang,WANG Cuixia. Study on coal full pore aperture distribution characteristics considering coal matrix compression effect[J]. Industry and Mine Automation,2022,48(2):125-130.
|
[6] |
李树刚,周雨璇,胡彪,等. 低阶煤吸附孔结构特征及其对甲烷吸附性能影响[J]. 煤田地质与勘探,2023,51(2):127-136. DOI: 10.12363/issn.1001-1986.22.09.0743
LI Shugang,ZHOU Yuxuan,HU Biao,et al. Structural characteristics of adsorption pores in low-rank coals and their effects on methane adsorption performance[J]. Coal Geology & Exploration,2023,51(2):127-136. DOI: 10.12363/issn.1001-1986.22.09.0743
|
[7] |
张少锋,李雅阁,秦兴林. 沁水盆地煤储层孔隙分形特征及其对瓦斯吸附的影响[J]. 煤炭科学技术,2019,47(3):163-167.
ZHANG Shaofeng,LI Yage,QIN Xinglin. Pore fractal characteristic of coal reservoirs in Qinshui Basin and its influence on methane adsorption property[J]. Coal Science and Technology,2019,47(3):163-167.
|
[8] |
王俏,王兆丰,代菊花,等. 深部煤层无烟煤甲烷吸附特性研究[J]. 煤矿安全,2021,52(6):28-33.
WANG Qiao,WANG Zhaofeng,DAI Juhua,et al. Study on methane adsorption characteristics of anthracite in deep coal seam[J]. Safety in Coal Mines,2021,52(6):28-33.
|
[9] |
任少魁,秦玉金,贾宗凯,等. 不同煤阶煤孔隙结构分形表征及其对甲烷吸附特性的影响[J]. 煤矿安全,2023,54(5):175-181.
REN Shaokui,QIN Yujin,JIA Zongkai,et al. Fractal characterization of pore structure of coal with different ranks and its effect on methane adsorption characteristics[J]. Safety in Coal Mines,2023,54(5):175-181.
|
[10] |
曾平,张东明,严先华,等. 原生煤和构造煤对甲烷的吸附扩散特性研究[J]. 矿业安全与环保,2023,50(4):36-41.
ZENG Ping,ZHANG Dongming,YAN Xianhua,et al. Study on gas adsorption and diffusion characteristics of intact coal and tectonic coal[J]. Mining Safety & Environmental Protection,2023,50(4):36-41.
|
[11] |
贾永勇,程媛圆,殷紫妤. 不同煤阶煤体甲烷吸附特性的对比分析[J]. 陕西煤炭,2023,42(3):37-42. DOI: 10.3969/j.issn.1671-749X.2023.03.008
JIA Yongyong,CHENG Yuanyuan,YIN Ziyu. Comparative analysis of methane adsorption characteristics of different coal ranks coal body[J]. Shaanxi Coal,2023,42(3):37-42. DOI: 10.3969/j.issn.1671-749X.2023.03.008
|
[12] |
吴旭坤. 构造应力区松软围岩巷道控制技术研究[D]. 贵阳:贵州大学,2021.
WU Xukun. Study on roadway control technology of soft surrounding rock in structural stress zone[D]. Guiyang:Guizhou University,2021.
|
[13] |
翦非帆. 无烟煤孔隙结构对甲烷吸附解吸特征的影响研究[D]. 徐州:中国矿业大学,2021.
JIAN Feifan. Effect of pore structure of anthracite on adsorption and desorption characteristics of methane[D]. Xuzhou:China University of Mining and Technology,2021.
|
[14] |
张鹏,张欣,王昆. 基于低温氮吸附法的商丘地区高阶煤孔隙特征研究[J]. 中国煤炭地质,2023,35(11):39-45. DOI: 10.3969/j.issn.1674-1803.2023.11.06
ZHANG Peng,ZHANG Xin,WANG Kun. Study on pore characteristics of high rank coal in Shangqiu area based on low-temperature nitrogen adsorption method[J]. Coal Geology of China,2023,35(11):39-45. DOI: 10.3969/j.issn.1674-1803.2023.11.06
|
[15] |
LI Yunbo,LIU Wen,SONG Dangyu,et al. Full-scale pore characteristics in coal and their influence on the adsorption capacity of coalbed methane[J]. Environmental Science and Pollution Research,2023,30(28):72187-72206. DOI: 10.1007/s11356-023-27298-2
|
[16] |
THOMMES M,KANEKO K,NEIMARK A V,et al. Physisorption of gases,with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry,2015,87(9/10):1051-1069.
|
[17] |
ZHAO Junlong,XU Hao,TANG Dazhen,et al. A comparative evaluation of coal specific surface area by CO2 and N2 adsorption and its influence on CH4 adsorption capacity at different pore sizes[J]. Fuel,2016,183:420-431. DOI: 10.1016/j.fuel.2016.06.076
|
[18] |
ZHANG Songhang,TANG Shuheng,TANG Dazhen,et al. Determining fractal dimensions of coal pores by FHH model:problems and effects[J]. Journal of Natural Gas Science and Engineering,2014,21:929-939. DOI: 10.1016/j.jngse.2014.10.018
|
[19] |
WANG Zhenyang,CHENG Yuanping,QI Yuxiao,et al. Experimental study of pore structure and fractal characteristics of pulverized intact coal and tectonic coal by low temperature nitrogen adsorption[J]. Powder Technology,2019,350:15-25. DOI: 10.1016/j.powtec.2019.03.030
|
[20] |
YI Minghao,CHENG Yuanping,WANG Chenghao,et al. Effects of composition changes of coal treated with hydrochloric acid on pore structure and fractal characteristics[J]. Fuel,2021,294. DOI: 10.1016/j.fuel.2021.120506.
|
[21] |
SONG Yu,JIANG Bo,LI Fengli,et al. Structure and fractal characteristic of micro- and meso-pores in low,middle-rank tectonic deformed coals by CO2 and N2 adsorption[J]. Microporous and Mesoporous Materials,2017,253:191-202. DOI: 10.1016/j.micromeso.2017.07.009
|
1. |
冯夷正. 液压支架电液控制系统故障诊断系统的设计研究. 山东煤炭科技. 2024(04): 104-108 .
![]() | |
2. |
刘康,刘卓然,刘瑭. 液压支架电液控制系统故障诊断系统设计研究. 科技创新与应用. 2024(15): 55-58 .
![]() | |
3. |
朱延涛. 基于视频比对算法的溜槽堵塞检测方案研究及应用. 煤炭加工与综合利用. 2023(02): 29-31 .
![]() | |
4. |
申丹. 液压支架电液控制系统故障诊断分析研究. 能源与节能. 2023(03): 164-166 .
![]() | |
5. |
马海燕. 农机电液控制系统的故障表现与维修技术. 农业装备技术. 2023(03): 16-18 .
![]() | |
6. |
高洋. 全工作面液压支架电液控制系统验证装置研究. 矿山机械. 2023(12): 1-7 .
![]() | |
7. |
杨永锴,张敏龙,许春雨,宋建成,田慕琴,宋单阳,张晓海,聂鸿霖. 液压支架电液控制系统总线通信故障检测与诊断方法. 工矿自动化. 2023(12): 70-76 .
![]() | |
8. |
王志勇. 液压支架油缸泄漏的主要原因与解决方案研究. 机械管理开发. 2022(01): 269-270+273 .
![]() | |
9. |
宋单阳,宋建成,陶心雅,杨金衡,卢春贵. 具有故障诊断功能的液压支架电液控制器通信系统. 工矿自动化. 2022(05): 100-106 .
![]() | |
10. |
史春鹏. 液压支架故障混合智能诊断专家系统设计与实现. 山西焦煤科技. 2022(09): 34-36 .
![]() | |
11. |
李丽,徐小玲. 基于模糊数学的液压支架故障诊断. 煤矿机械. 2021(02): 157-159 .
![]() | |
12. |
杨华芬,陈斌. 大数据框架下基于改进自适应滤波算法的机械故障信号处理. 机床与液压. 2021(02): 175-180 .
![]() | |
13. |
倪涛涛,周剑,曹昆. 门克庆煤矿智能化开采系统设计研究. 煤. 2021(01): 34-39 .
![]() | |
14. |
刘斌. 基于AMESim快速定位液压支架液压系统的故障. 机械管理开发. 2021(02): 85-87 .
![]() | |
15. |
刘力. 基于信号局部均值分解的机械故障诊断研究. 机械设计与制造工程. 2021(06): 117-120 .
![]() | |
16. |
杨洁,宋新成,王崴,马占全. 某装备吊机液压故障诊断专家系统设计. 火力与指挥控制. 2021(09): 155-161 .
![]() | |
17. |
辛亮. 液压支架电液控制系统故障分析及维修技术的应用. 内蒙古石油化工. 2021(10): 78-81 .
![]() | |
18. |
郑沁楠. 液压支架电液控制系统故障快速诊断. 能源与节能. 2020(04): 72-73+118 .
![]() | |
19. |
胡云. 探讨高端液压支架管路系统的优化改造. 机械管理开发. 2020(03): 252-253 .
![]() | |
20. |
孙峰,高红波. 面向大数据新能源拖拉机发动机智能故障监测系统. 农机化研究. 2020(11): 246-250 .
![]() | |
21. |
韩万兵,王浩玉. 采用TwitterStorm技术的船舶机械故障监测大数据分析. 舰船科学技术. 2020(08): 67-69 .
![]() | |
22. |
王玉宏. 基于大数据决策分析的风电机组故障诊断研究. 现代工业经济和信息化. 2020(04): 16-17+28 .
![]() | |
23. |
赵贵能. 集中型馈线自动化在铁路通信中断时的故障处理. 制造业自动化. 2020(05): 133-136 .
![]() | |
24. |
高谦,肖维. 基于T-S模糊神经网络的液压马达故障诊断方法研究. 计算机与数字工程. 2020(12): 3027-3030 .
![]() | |
25. |
杨坤. 液压支架电液控制器设计研究. 自动化应用. 2019(02): 43-44 .
![]() | |
26. |
史洪泉. 液压支架电液控制系统故障快速诊断技术. 自动化应用. 2019(04): 33-34 .
![]() | |
27. |
李海明. 液压支架泄漏故障诊断机理及应用研究. 机械管理开发. 2019(06): 120-121 .
![]() | |
28. |
刘丰军. 基于大数据技术的煤矿应急救援辅助决策系统的研究. 山东煤炭科技. 2019(10): 156-157+163 .
![]() |