Volume 50 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
LI Chenxin. Research status and development direction of 5G key technologies for coal mines[J]. Journal of Mine Automation,2024,50(7):79-88.  doi: 10.13272/j.issn.1671-251x.2024040067
Citation: LI Chenxin. Research status and development direction of 5G key technologies for coal mines[J]. Journal of Mine Automation,2024,50(7):79-88.  doi: 10.13272/j.issn.1671-251x.2024040067

Research status and development direction of 5G key technologies for coal mines

doi: 10.13272/j.issn.1671-251x.2024040067
  • Received Date: 2024-04-21
  • Rev Recd Date: 2024-07-31
  • Available Online: 2024-08-02
  • Based on the current research results and practical experience of 5G in coal mines, this paper analyzes the research status and development direction of key technologies for 5G in coal mines from three aspects:5G private network architecture, coverage optimization, and intelligent application scenario construction. In terms of 5G private network networking for coal mines, two types of models, namely large-scale networking at the coal group level and independent private networks for mines, can meet the needs of 5G system construction and deployment for coal mines. In terms of enhancing 5G wireless coverage for coal mines: the wireless transmission performance of 5G for coal mines needs continuous research and improvement. At present, it is advisable to use low-frequency (below 1 GHz) multi carrier SUL (supplementary uplink) for optimizing the coverage of 5G for coal mines. To achieve breakthroughs and improvements in the explosion-proof safety power threshold of underground radio waves, it is necessary to synchronously increase the wireless transmission power on both sides of the 5G base station and terminal used in coal mines. It can optimize the overall coverage capability of the 5G system used in coal mines. Pre research on 5G coverage enhancement technology for coal mines based on 6G RIS (reconfigurable intelligent surface) is needed to provide further support for improving wireless coverage capabilities. In terms of building intelligent 5G application scenarios for coal mines, it is necessary to carry out joint technical research and development in the fields of mining equipment and mining communication. It is suggested to conduct research on the information physical mapping of equipment remote control based on 5G for coal mines and future autonomous group collaborative control of equipment. It is suggested to conduct research the expected functional safety mechanism of intelligent applications. It is suggested to develop 5G modules for coal mines that are small, lightweight, and fully compatible with industrial control protocols for on-site equipment.

     

  • loading
  • [1]
    孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7.

    SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7.
    [2]
    孙继平. 煤矿智能化与矿用5G和网络硬切片技术[J]. 工矿自动化,2021,47(8):1-6.

    SUN Jiping. Coal mine intelligence,mine 5G and network hard slicing technology[J]. Industry and Mine Automation,2021,47(8):1-6.
    [3]
    孟庆勇. 5G技术在煤矿井下应用架构探讨[J]. 工矿自动化,2020,46(7):28-33.

    MENG Qingyong. Probe on 5G architecture applied in coal mine underground[J]. Industry and Mine Automation,2020,46(7):28-33.
    [4]
    李晨鑫. 矿用5G通信演进技术研究[J]. 工矿自动化,2023,49(3):6-12.

    LI Chenxin. Research on mine 5G-advanced communication evolution technology[J]. Journal of Mine Automation,2023,49(3):6-12.
    [5]
    孙继平,张高敏. 矿用5G频段选择及天线优化设置研究[J]. 工矿自动化,2020,46(5):1-7.

    SUN Jiping,ZHANG Gaomin. Research on 5G frequency band selection and antenna optimization setting in coal mine[J]. Industry and Mine Automation,2020,46(5):1-7.
    [6]
    常琳,郑慧莹,李鸣. 煤矿5G通信系统的安全性研究[J]. 煤矿安全,2021,52(8):137-141,146.

    CHANG Lin,ZHENG Huiying,LI Ming. Research on safety of 5G communication system in coal mine[J]. Safety in Coal Mines,2021,52(8):137-141,146.
    [7]
    郑小磊,梁宏. 煤矿5G通信系统安全技术要求和检验方法[J]. 工矿自动化,2021,47(3):9-13,33.

    ZHENG Xiaolei,LIANG Hong. Safety technical requirements and inspection methods of coal mine 5G communication system[J]. Industry and Mine Automation,2021,47(3):9-13,33.
    [8]
    张立亚. 煤矿5G通信系统安全应用技术研究[J]. 工矿自动化,2021,47(12):8-12,45.

    ZHANG Liya. Research on safety application technology of coal mine 5G communication system[J]. Industry and Mine Automation,2021,47(12):8-12,45.
    [9]
    霍振龙. 矿井无线通信系统现状与发展趋势[J]. 工矿自动化,2022,48(6):1-5.

    HUO Zhenlong. Current situation and development trend of mine wireless communication system[J]. Journal of Mine Automation,2022,48(6):1-5.
    [10]
    王国法,赵国瑞,胡亚辉. 5G技术在煤矿智能化中的应用展望[J]. 煤炭学报,2020,45(1):16-23.

    WANG Guofa,ZHAO Guorui,HU Yahui. Application prospect of 5G technology in coal mine intelligence[J]. Journal of China Coal Society,2020,45(1):16-23.
    [11]
    王国法,张良,李首滨,等. 煤矿无人化智能开采系统理论与技术研发进展[J]. 煤炭学报,2023,48(1):34-53.

    WANG Guofa,ZHANG Liang,LI Shoubin,et al. Progresses in theory and technological development of unmanned smart mining system[J]. Journal of China Coal Society,2023,48(1):34-53.
    [12]
    范京道,闫振国,李川. 基于5G技术的煤矿智能化开采关键技术探索[J]. 煤炭科学技术,2020,48(7):92-97.

    FAN Jingdao,YAN Zhenguo,LI Chuan. Exploration of intelligent coal mining key technology based on 5G technology[J]. Coal Science and Technology,2020,48(7):92-97.
    [13]
    李晨鑫. 基于5G的矿用装备远程控制技术研究[J]. 工矿自动化,2023,49(9):90-97.

    LI Chenxin. Research on remote control technology of mining equipment based on 5G[J]. Journal of Mine Automation,2023,49(9):90-97.
    [14]
    李晨鑫,张立亚. 煤矿井下网联式自动驾驶技术研究[J]. 工矿自动化,2022,48(6):49-55.

    LI Chenxin,ZHANG Liya. Research on the network connected automatic driving technology in underground coal mine[J]. Journal of Mine Automation,2022,48(6):49-55.
    [15]
    李晨鑫,张立亚,刘斌,等. 基于5G直连通信的矿井应急通信技术[J]. 煤矿安全,2023,54(2):212-216.

    LI Chenxin,ZHANG Liya,LIU Bin,et al. Mine emergency communication technologies based on 5G Sidelink communication[J]. Safety in Coal Mines,2023,54(2):212-216.
    [16]
    顾义东. 5G技术在煤矿掘进工作面运输系统中的应用[J]. 工矿自动化,2022,48(6):64-68.

    GU Yidong. Application of 5G technology in coal mine heading face transportation system[J]. Journal of Mine Automation,2022,48(6):64-68.
    [17]
    孙继平. 煤矿用5G通信系统标准研究制定[J]. 工矿自动化,2023,49(8):1-8.

    SUN Jiping. Research and development of 5G communication system standards for coal mines[J]. Journal of Mine Automation,2023,49(8):1-8.
    [18]
    蔡峰,王陈书略,乔梁,等. 矿用5G智能终端数据交互和共享规范研究[J]. 工矿自动化,2023,49(9):98-105.

    CAI Feng,WANG Chenshulüe,QIAO Liang,et al. Research on data exchange and sharing standards for mining 5G intelligent terminal[J]. Journal of Mine Automation,2023,49(9):98-105.
    [19]
    GB/T 3836.1−2021 爆炸性环境 第1部分:设备 通用要求[S].

    GB/T 3836.1-2021 Explosive atmospheres-Part 1:Equipment- General requirements[S].
    [20]
    孙继平,彭铭,潘涛,等. 无线电波防爆安全阈值研究[J]. 工矿自动化,2023,49(2):1-5.

    SUN Jiping,PENG Ming,PAN Tao,et al. Research on the safety threshold of radio wave explosion-proof[J]. Journal of Mine Automation,2023,49(2):1-5.
    [21]
    张高敏,刘毅,彭铭. UWR−FDTD矿井电磁波数值分析方法[J]. 煤炭学报,2022,47(11):4157-4166.

    ZHANG Gaomin,LIU Yi,PENG Ming. Numerical analysis method of the electromagnetic fields in coal mine roadway using UWR-FDTD[J]. Journal of China Coal Society,2022,47(11):4157-4166.
    [22]
    张高敏,刘毅,彭铭. FDTD矿井无线传输特性分析方法研究[J]. 煤炭科学技术,2022,50(11):202-212.

    ZHANG Gaomin,LIU Yi,PENG Ming. Resarch on the FDTD analysis method of wireless transmission characteristics in underground mine[J]. Coal Science and Technology,2022,50(11):202-212.
    [23]
    孙继平,彭铭. 矿井无线电波防爆安全发射功率研究[J]. 工矿自动化,2024,50(3):1-5.

    SUN Jiping,PENG Ming. Research on the safe transmission power of mine radio wave explosion prevention[J]. Journal of Mine Automation,2024,50(3):1-5.
    [24]
    王国法,庞义辉,任怀伟,等. 智慧矿山系统工程及关键技术研究与实践[J]. 煤炭学报,2024,49(1):181-202.

    WANG Guofa,PANG Yihui,REN Huaiwei,et al. System engineering and key technologies research and practice of smart mine[J]. Journal of China Coal Society,2024,49(1):181-202.
    [25]
    TS 38.101-1 NR; User Equipment (UE) radio transmission and reception; Part1:Range 1 Standalone[S].
    [26]
    TS 38.101-3 NR; User Equipment (UE) radio transmission and reception; Part 1:Range 1 and Range 2 Interworking operation with other radios[S].
    [27]
    TS 38.306 NR; User Equipment (UE) radio access capabilities[S].
    [28]
    YD/T 3627−2019 5G数字蜂窝移动通信网 增强移动宽带终端设备技术要求(第一阶段)[S].

    YD/T 3627-2019 5G digital cellular mobile telecommunication network-technical requirements of eMBB user equipment (Phase 1)[S].
    [29]
    YD/T 4193−2023 5G多模双卡双待终端设备技术要求[S].

    YD/T 4193-2023 5G Multi-RAT Dual-Card Dual-Standby user equipment technical requirements[S].
    [30]
    YD/T 4550−2023 5G多模单卡终端设备技术要求[S].

    YD/T 4193-2023 5G Multi-RAT single-card user equipment technical requirements[S].
    [31]
    CHENG Qiang,JIN Shi,CUI Tiejun. Reconfigurable intelligent surfaces for wireless communications[J]. Frontiers of Information Technology & Electronic Engineering,2023,24(12):1665-1668.
    [32]
    李世银,杨瑞鑫,杨磊,等. 煤矿井下智能超表面非视距无线覆盖技术综述[J]. 中国矿业大学学报,2024,53(3):613-622.

    LI Shiyin,YANG Ruixin,YANG Lei,et al. Survey of the non-line-of-sight wireless coverage technology by reconfigurable intelligent surfaces in underground coal mines[J]. Journal of China University of Mining & Technology,2024,53(3):613-622.
    [33]
    YD/T 3929−2021 5G数字蜂窝移动通信网 6 GHz以下频段基站设备技术要求(第一阶段)[S].

    YD/T 3929-2023 5G digital cellular mobile telecommunication network-technical specification of sub 6 GHz gNB equipment (Phase 1)[S].
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (193) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return