WANG Junfu, XUE Xiaojie, YANG Yi. Laser point cloud segmentation algorithm for hydraulic support based on neighborhood feature encoding and optimization[J]. Journal of Mine Automation,2024,50(7):98-106, 178. DOI: 10.13272/j.issn.1671-251x.2024040052
Citation: WANG Junfu, XUE Xiaojie, YANG Yi. Laser point cloud segmentation algorithm for hydraulic support based on neighborhood feature encoding and optimization[J]. Journal of Mine Automation,2024,50(7):98-106, 178. DOI: 10.13272/j.issn.1671-251x.2024040052

Laser point cloud segmentation algorithm for hydraulic support based on neighborhood feature encoding and optimization

More Information
  • Received Date: April 16, 2024
  • Revised Date: July 27, 2024
  • Available Online: July 31, 2024
  • Due to the influence of underground coal dust and easy obstruction, the laser point cloud data of hydraulic supports is prone to be incomplete. The existing point cloud segmentation algorithms are difficult to obtain fine-grained point cloud features, unable to obtain complete structural information of the point cloud. The algorithms are prone to introducing semantically dissimilar points in the neighborhood, resulting in low precision of laser point cloud segmentation for hydraulic supports. In order to solve the above problems, a laser point cloud segmentation algorithm for hydraulic supports based on neighborhood feature encoding and optimization is proposed. The method introduces a local neighborhood feature aggregation module consisting of neighborhood feature encoding module, neighborhood feature optimization module, and hybrid pooling module. The neighborhood feature encoding module adds polar coordinate encoding and centroid offset to represent the spatial structure of local point clouds on the basis of traditional 3D coordinate encoding, improving the feature extraction capability for incomplete point clouds. The neighborhood feature optimization module optimizes the feature expression in the neighborhood space by judging the feature distance and discarding redundant features, thereby more effectively learning the local fine-grained features of the point cloud and enhancing the local contextual information of the point cloud. The hybrid pooling module combines attention pooling and max pooling to obtain single point features with rich information by aggregating salient and important features within the neighborhood, reducing information loss. A neighborhood expansion module consisting of two sets of local neighborhood feature aggregation modules and residual connections is constructed to capture long-range dependencies between features, expand the local receptive field of individual points, and aggregate more effective features. The experimental results show that the algorithm has an mean intersection over union of 93.26% and an average accuracy of 96.42% on the laser point cloud segmentation dataset of hydraulic supports. It can effectively distinguish different geometric structures of hydraulic supports and achieve accurate segmentation of various components of hydraulic supports.
  • [1]
    王国法,刘峰,孟祥军,等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术,2019,47(8):1-36.

    WANG Guofa,LIU Feng,MENG Xiangjun,et al. Research and practice of coal mine intellectualization (primary stage)[J]. Coal Science and Technology,2019,47(8):1-36.
    [2]
    GUO Jun,HUANG Wenbo,FENG Guorui,et al. Stability analysis of longwall top-coal caving face in extra-thick coal seams based on an innovative numerical hydraulic support model[J]. International Journal of Mining Science and Technology,2024,34(4):491-505. DOI: 10.1016/j.ijmst.2024.04.011
    [3]
    高有进,杨艺,常亚军,等. 综采工作面智能化关键技术现状与展望[J]. 煤炭科学技术,2021,49(8):1-22.

    GAO Youjin,YANG Yi,CHANG Yajun,et al. Status and prospect of key technologies of intelligentization of fully-mechanized coal mining face[J]. Coal Science and Technology,2021,49(8):1-22.
    [4]
    王国法,庞义辉,许永祥,等. 厚煤层智能绿色高效开采技术与装备研发进展[J]. 采矿与安全工程学报,2023,40(5):882-893.

    WANG Guofa,PANG Yihui,XU Yongxiang,et al. Development of intelligent green and efficient mining technology and equipment for thick coal seam[J]. Journal of Mining & Safety Engineering,2023,40(5):882-893.
    [5]
    王国法,庞义辉,任怀伟,等. 智慧矿山系统工程及关键技术研究与实践[J]. 煤炭学报,2024,49(1):181-202. DOI: 10.13225/j.cnki.jccs.2023.1355

    WANG Guofa,PANG Yihui,REN Huaiwei,et al. System engineering and key technologies research and practice of smart mine[J]. Journal of China Coal Society,2024,49(1):181-202. DOI: 10.13225/j.cnki.jccs.2023.1355
    [6]
    李建,任怀伟,巩师鑫. 综采工作面液压支架状态感知与分析技术研究[J]. 工矿自动化,2023,49(10):1-7,103.

    LI Jian,REN Huaiwei,GONG Shixin. Research on state perception and analysis technology of hydraulic support in fully mechanized working face[J]. Journal of Mine Automation,2023,49(10):1-7,103.
    [7]
    王国法,杜毅博. 智慧煤矿与智能化开采技术的发展方向[J]. 煤炭科学技术,2019,47(1):1-10.

    WANG Guofa,DU Yibo. Development direction of intelligent coal mine and intelligent mining technology[J]. Coal Science and Technology,2019,47(1):1-10.
    [8]
    XI Xiaohuan,WAN Yiping,WANG Cheng. Building boundaries extraction from points cloud using an image edge detection method[C]. IEEE International Geoscience and Remote Sensing Symposium,Beijing,2016:1270-1273.
    [9]
    SCHNABEL R,WAHL R,KLEIN R. Efficient RANSAC for point-cloud shape detection[J]. Computer Graphics Forum,2007,26(2):214-226. DOI: 10.1111/j.1467-8659.2007.01016.x
    [10]
    ZHOU Dingfu,FANG Jin,SONG Xibin,et al. Joint 3D instance segmentation and object detection for autonomous driving[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:1836-1846.
    [11]
    XU Yongyang,TANG Wei,ZENG Ziyin,et al. NeiEA-NET:semantic segmentation of large-scale point cloud scene via neighbor enhancement and aggregation[J]. International Journal of Applied Earth Observation and Geoinformation,2023,119. DOI: 10.1016/j.jag.2023.103285.
    [12]
    MATURANA D,SCHERER S. VoxNet:a 3D convolutional neural network for real-time object recognition[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Hamburg,2015:922-928.
    [13]
    LE T,DUAN Ye. PointGrid:a deep network for 3D shape understanding[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:9204-9214.
    [14]
    SU Hang,MAJI S,KALOGERAKIS E,et al. Multi-view convolutional neural networks for 3D shape recognition[C]. IEEE International Conference on Computer Vision,Santiago,2015:945-953.
    [15]
    MILIOTO A,VIZZO I,BEHLEY J,et al. RangeNet:fast and accurate LiDAR semantic segmentation[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Macau,2019:4213-4220.
    [16]
    CHARLES R Q,HAO Su,MO Kaichun,et al. PointNet:deep learning on point sets for 3D classification and segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:77-85.
    [17]
    QI C R,YI Li,SU Hao,et al. PointNet++:deep hierarchical feature learning on point sets in a metric space[C]. The 31st International Conference on Neural Information Processing Systems,Long Beach,2017:5105-5114.
    [18]
    HU Qingyong,YANG Bo,XIE Linhai,et al. RandLA-Net:efficient semantic segmentation of large-scale point clouds[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:11105-11114.
    [19]
    FAN Siqi,DONG Qiulei,ZHU Fenghua,et al. SCF-Net:learning spatial contextual features for large-scale point cloud segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Nashville,2021:14499-14508.
    [20]
    ZENG Ziyin,XU Yongyang,XIE Zhong,et al. LEARD-Net:semantic segmentation for large-scale point cloud scene[J]. International Journal of Applied Earth Observation and Geoinformation,2022,112. DOI: 10.1016/j.jag.2022.102953.
    [21]
    QIAN Wei,XING Weiwei,FEI Shumin. H∞ state estimation for neural networks with general activation function and mixed time-varying delays[J]. IEEE Transactions on Neural Networks and Learning Systems,2021,32(9):3909-3918. DOI: 10.1109/TNNLS.2020.3016120
  • Cited by

    Periodical cited type(10)

    1. 李鹏,程晨,臧润泽. 基于UM-HE的火力发电厂继电器室巡检机器人视觉图像增强研究. 电力设备管理. 2025(01): 177-179 .
    2. 白宇宸,苗作华,徐厚友,王梦婷. 基于光照约束的煤矿井下低光照图像增强算法. 煤矿安全. 2025(03): 207-214 .
    3. 张旭辉,麻兵,杨文娟,董征,李语阳. 煤矿井下非均匀照度图像去噪研究. 工矿自动化. 2024(02): 1-8 . 本站查看
    4. 段一凡,刘然,刘小杰,李欣,袁雪涛,吕庆. 图像识别技术在高炉风口识别与监测中的应用前景探索. 钢铁. 2024(05): 56-70 .
    5. 郭永辉. 煤矿井下图像增强算法研究. 矿山机械. 2024(06): 53-57 .
    6. 程子豪,裴玉瑶,周义祥,张文东,王常青,周璇,王艳玲,吴茜. 基于强度和图像梯度的瞳孔中心定位. 贵州大学学报(自然科学版). 2024(04): 64-69 .
    7. 马骞. 基于多模态特征的重载铁路钢轨损伤检测方法. 无损检测. 2024(09): 69-74 .
    8. 李谦一,张宏宇,房媛. 基于改进RRD-Net的低照度图像增强网络. 照明工程学报. 2024(05): 61-67 .
    9. 谷亚楠,李晴,刘晨晨,张富凯. 基于增强网格网络的井下尘雾图像清晰化算法. 工矿自动化. 2024(10): 120-127+159 . 本站查看
    10. 王智军. 基于透射率约束的降质图像视觉效果增强处理方法. 传感器世界. 2024(12): 27-32 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (95) PDF downloads (19) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return