Citation: | CHEN Yingxian, ZHU Zhe, MA Huiru, et al. Research on tetrahedral adaptive mesh grading refinement for intersecting faults[J]. Journal of Mine Automation,2024,50(9):153-160. doi: 10.13272/j.issn.1671-251x.2024030058 |
[1] |
PAPOUTSAKIS A,SAZHIN S S,BEGG S,et al. An efficient adaptive mesh refinement (AMR) algorithm for the discontinuous Galerkin method:applications for the computation of compressible two-phase flows[J]. Journal of Computational Physics,2018,363:399-427. doi: 10.1016/j.jcp.2018.02.048
|
[2] |
SCHILLINGER D,RANK E. An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry[J]. Computer Methods in Applied Mechanics and Engineering,2011,200(47/48):3358-3380.
|
[3] |
ZENG W,LIU G R. Smoothed finite element methods (S-FEM):an overview and recent developments[J]. Archives of Computational Methods in Engineering,2018,25(2):397-435. doi: 10.1007/s11831-016-9202-3
|
[4] |
SINGH D,FRIIS H A,JETTESTUEN E,et al. Adaptive mesh refinement in locally conservative level set methods for multiphase fluid displacements in porous media[J]. Computational Geosciences,2023,27(5):707-736. doi: 10.1007/s10596-023-10219-0
|
[5] |
CORCOLES-ORTEGA J,SALAZAR-PALMA M. Self-adaptive algorithms based on h-refinement applied to finite element method[C]. IEEE Antennas and Propagation Society International Symposium,Washington,2005. DOI:10.1109/APS. 2005.1552777.
|
[6] |
ZHOU Longquan,WANG Hongjuan,LU Xinming,et al. Algorithm for curved surface mesh generation based on delaunay refinement[J]. International Journal of Pattern Recognition and Artificial Intelligence,2020,34(4). DOI: 10.1142/S021800142050007X.
|
[7] |
DÖRFEL M R,JÜTTLER B,SIMEON B. Adaptive isogeometric analysis by local h-refinement with T-splines[J]. Computer Methods in Applied Mechanics and Engineering,2010,199(5/6/7/8):264-275.
|
[8] |
YOU Y H,KOU X Y,TAN S T. Adaptive tetrahedral mesh generation of 3D heterogeneous objects[J]. Computer-Aided Design and Applications,2015,12(5):580-588. doi: 10.1080/16864360.2015.1014736
|
[9] |
LI Xiangrong,SHEPHARD M S,BEALL M W. 3D anisotropic mesh adaptation by mesh modification[J]. Computer Methods in Applied Mechanics and Engineering,2005,194(48/49):4915-4950.
|
[10] |
PETROV M S,TODOROV T D. Refinement strategies related to cubic tetrahedral meshes[J]. Applied Numerical Mathematics,2019,137:169-183. doi: 10.1016/j.apnum.2018.11.006
|
[11] |
BELDA-FERRÍN G,GARGALLO-PEIRÓ A,ROCA X. Local bisection for conformal refinement of unstructured 4D simplicial meshes[M]. Cham:Springer International Publishing,2019:229-247.
|
[12] |
LYU Z. Simplicial mesh refinement in computational geometry [D]. San Diego:University of California,2018.
|
[13] |
ALKÄMPER M. Mesh refinement for parallel-adaptive FEM:theory and implementation [D]. Stuttgart:Universität Stuttgart,2019.
|
[14] |
DE COUGNY H L,SHEPHARD M S. Parallel refinement and coarsening of tetrahedral meshes[J]. International Journal for Numerical Methods in Engineering,1999,46(7):1101-1125. doi: 10.1002/(SICI)1097-0207(19991110)46:7<1101::AID-NME741>3.0.CO;2-E
|
[15] |
BRONSON J R. New approaches to quality tetrahedral mesh generation [D]. Salt Lake City:The University of Utah,2015.
|
[16] |
ANTEPARA O,BALCÁZAR N,OLIVA A. Tetrahedral adaptive mesh refinement for two-phase flows using conservative level-set method[J]. International Journal for Numerical Methods in Fluids,2021,93(2):481-503.
|
[17] |
ZHANG Wenjing,MA Yuewen,ZHENG Jianmin,et al. Tetrahedral mesh deformation with positional constraints[J]. Computer Aided Geometric Design,2020,81. DOI: 10.1016/j.cagd.2020.101909.
|
[18] |
钟德云,王李管,毕林. 复杂矿体模型多域自适应网格剖分方法[J]. 武汉大学学报(信息科学版),2019,44(10):1538-1544.
ZHONG Deyun,WANG Liguan,BI Lin. Adaptive meshing of multi-domain complex orebody models[J]. Geomatics and Information Science of Wuhan University,2019,44(10):1538-1544.
|
[19] |
周龙泉. 非结构化有限元网格生成方法及其应用研究[D]. 青岛:山东科技大学,2019.
ZHOU Longquan. Research on unstructured finite element mesh generation method and its application[D]. Qingdao:Shandong University of Science and Technology,2019.
|
[20] |
雷光伟,杨春和,王贵宾,等. 断层影响带的发育规律及其力学成因[J]. 岩石力学与工程学报,2016,35(2):231-241.
LEI Guangwei,YANG Chunhe,WANG Guibin,et al. The development law and mechanical causes of fault influenced zone[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(2):231-241.
|
[21] |
BEY J. Tetrahedral grid refinement[J]. Computing,1995,55(4):355-378. doi: 10.1007/BF02238487
|
[22] |
NGO L C,CHOI H G. A multi-level adaptive mesh refinement method for level set simulations of multiphase flow on unstructured meshes[J]. International Journal for Numerical Methods in Engineering,2017,110(10):947-971. doi: 10.1002/nme.5442
|
[23] |
LIU Anwei,JOE B. Quality local refinement of tetrahedral meshes based on 8-subtetrahedron subdivision[J]. Mathematics of Computation,1996,65(215):1183-1200. doi: 10.1090/S0025-5718-96-00748-X
|
[24] |
XI Ning,SUN Yingjie,XIAO Lei,et al. Designing parallel adaptive Laplacian smoothing for improving tetrahedral mesh quality on the GPU[J]. Applied Sciences,2021,11(12):5543. doi: 10.3390/app11125543
|
[25] |
ZHANG Linbo. A parallel algorithm for adaptive local refinement of tetrahedral meshes using bisection[J]. Numerical Mathematics:Theory Methods and Applications,2009(1):65-89.
|
[26] |
SUN Lu,ZHAO Guoqun,MA Xinwu. Adaptive generation and local refinement methods of three-dimensional hexahedral element mesh[J]. Finite Elements in Analysis and Design,2012,50:184-200. doi: 10.1016/j.finel.2011.09.009
|
[27] |
BORKER R,HUANG D,GRIMBERG S,et al. Mesh adaptation framework for embedded boundary methods for computational fluid dynamics and fluid-structure interaction[J]. International Journal for Numerical Methods in Fluids,2019,90(8):389-424. doi: 10.1002/fld.4728
|
[28] |
LAURENT G,CAUMON G,BOUZIAT A,et al. A parametric method to model 3D displacements around faults with volumetric vector fields[J]. Tectonophysics,2013,590:83-93. doi: 10.1016/j.tecto.2013.01.015
|
[29] |
WANG Bowen,MEI Gang,XU Nengxiong. Method for generating high-quality tetrahedral meshes of geological models by utilizing CGAL[J]. MethodsX,2020,7. DOI: 10.1016/j.mex.2020.101061.
|
[30] |
郭甲腾,代欣位,刘善军,等. 一种三维地质体模型的隐式剖切方法[J]. 武汉大学学报(信息科学版),2021,46(11):1766-1773.
GUO Jiateng,DAI Xinwei,LIU Shanjun,et al. An implicit cutting method for 3D geological body model[J]. Geomatics and Information Science of Wuhan University,2021,46(11):1766-1773.
|
[31] |
江亮亮,杨付正. 利用曲率分析的三维网格质量评估方法[J]. 电子与信息学报,2014,36(11):2781-2785.
JIANG Liangliang,YANG Fuzheng. A 3D mesh quality assessment metric via analyzing curvature[J]. Journal of Electronics & Information Technology,2014,36(11):2781-2785.
|