Citation: | YANG Zelin, YANG Liqing, HAO Bin. Detection of surface defects on conveyor belts based on adversarial repair networks[J]. Journal of Mine Automation,2024,50(9):108-114, 166. doi: 10.13272/j.issn.1671-251x.2024030002 |
[1] |
王海军,王洪磊. 带式输送机智能化关键技术现状与展望[J]. 煤炭科学技术,2022,50(12):225-239.
WANG Haijun,WANG Honglei. Status and prospect of intelligent key technologies of belt conveyor[J]. Coal Science and Technology,2022,50(12):225-239.
|
[2] |
曹虎奇. 煤矿带式输送机撕带断带研究分析[J]. 煤炭科学技术,2015,43(增刊2):130-134.
CAO Huqi. Study and analysis on tear belt and break belt of belt conveyor in coal mine[J]. Coal Science and Technology,2015,43(S2):130-134.
|
[3] |
GUO Xiaoqiang,LIU Xinhua,ZHOU Hao,et al. Belt tear detection for coal mining conveyors[J]. Micromachines,2022,13(3):449. doi: 10.3390/mi13030449
|
[4] |
蹇华,向何,孙万权,等. 带式输送机胶带纵向撕裂问题分析与对策[J]. 中国设备工程,2022(增刊2):152-154.
JIAN Hua,XIANG He,SUN Wanquan,et al. Analysis and countermeasures of longitudinal tearing of conveyor belt[J]. China Plant Engineering,2022(S2):152-154.
|
[5] |
程月,尚学文,王福平,等. 皮带撕裂的视觉检测[J]. 机械工程与自动化,2018(3):132-134,137. doi: 10.3969/j.issn.1672-6413.2018.03.054
CHENG Yue,SHANG Xuewen,WANG Fuping,et al. Visual inspection of belt tearing[J]. Mechanical Engineering & Automation,2018(3):132-134,137. doi: 10.3969/j.issn.1672-6413.2018.03.054
|
[6] |
王以娜. 基于视觉检测的皮带纵向撕裂检测关键技术研究[D]. 鞍山:辽宁科技大学,2020.
WANG Yi'na. Research on key technology of belt longitudinal tear detection based on visual inspection[D]. Anshan:University of Science and Technology Liaoning,2020.
|
[7] |
周宇杰,徐善永,黄友锐,等. 基于改进YOLOv4的输送带损伤检测方法[J]. 工矿自动化,2021,47(11):61-65.
ZHOU Yujie,XU Shanyong,HUANG Yourui,et al. Conveyor belt damage detection method based on improved YOLOv4[J]. Industry and Mine Automation,2021,47(11):61-65.
|
[8] |
张梦超,周满山,张媛,等. 基于深度学习的矿用输送带损伤检测方法[J]. 工矿自动化,2021,47(6):51-56.
ZHANG Mengchao,ZHOU Manshan,ZHANG Yuan,et al. Damage detection method for mine conveyor belt based on deep learning[J]. Industry and Mine Automation,2021,47(6):51-56.
|
[9] |
GUO Xiaoqiang,LIU Xinhua,KRÓLCZYK G,et al. Damage detection for conveyor belt surface based on conditional cycle generative adversarial network[J]. Sensors,2022,22(9). DOI: 10.3390/s22093485.
|
[10] |
YANG Qi,LI Fang,TIAN Hong,et al. A new knowledge-distillation-based method for detecting conveyor belt defects[J]. Applied Sciences,2022,12(19). DOI: 10.3390/app121910051.
|
[11] |
罗东亮,蔡雨萱,杨子豪,等. 工业缺陷检测深度学习方法综述[J]. 中国科学:信息科学,2022,52(6):1002-1039. doi: 10.1360/SSI-2021-0336
LUO Dongliang,CAI Yuxuan,YANG Zihao,et al. Survey on industrial defect detection with deep learning[J]. Scientia Sinica (Informationis),2022,52(6):1002-1039. doi: 10.1360/SSI-2021-0336
|
[12] |
TENG Yapeng,LI Haoyang,CAI Fuzhen,et al. Unsupervised visual defect detection with score-based generative model[EB/OL]. [2023-11-25]. https://arxiv.org/abs/2211.16092v1.
|
[13] |
LYU Chengkan,ZHANG Zhengtao,SHEN Fei,et al. Unsupervised automatic defect inspection based on image matching and local one-class classification[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,Vancouver,2023:4435-4444.
|
[14] |
GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al. Generative adversarial nets[J]. Advances in Neural Information Processing Systems,2014,27:2672-2680.
|
[15] |
ZAVRTANIK V,KRISTAN M,SKOČAJ D. DRÆM-a discriminatively trained reconstruction embedding for surface anomaly detection[C]. IEEE/CVF International Conference on Computer Vision,Montreal,2021:8310-8319.
|
[16] |
YANG Minghui,WU Peng,FENG Hui. MemSeg:a semi-supervised method for image surface defect detection using differences and commonalities[J]. Engineering Applications of Artificial Intelligence,2023,119. DOI: 10.1016/j.engappai.2023.105835.
|
[17] |
CIMPOI M,MAJI S,KOKKINOS I,et al. Describing textures in the wild[C]. IEEE Conference on Computer Vision and Pattern Recognition,Columbus,2014:3606-3613.
|
[18] |
WANG Zhou,BOVIK A C,SHEIKH H R,et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing,2004,13(4):600-612. doi: 10.1109/TIP.2003.819861
|
[19] |
JOHNSON J,ALAHI A,LI Feifei. Perceptual losses for real-time style transfer and super-resolution[C]. 14th European Conference on Computer Vision,Amsterdam,2016:694-711.
|
[20] |
BERGMANN P,LÖWE S,FAUSER M,et al. Improving unsupervised defect segmentation by applying structural similarity to autoencoders[EB/OL]. [2023-11-25]. https://arxiv.org/abs/1807.02011v3.
|
[21] |
LIANG Yufei,ZHANG Jiangning,ZHAO Shiwei,et al. Omni-frequency channel-selection representations for unsupervised anomaly detection[J]. IEEE Transactions on Image Processing,2023,32:4327-4340. doi: 10.1109/TIP.2023.3293772
|
[22] |
AKCAY S,ATAPOUR-ABARGHOUEI A,RECKON T P. GANomaly:semi-supervised anomaly detection via adversarial training[C]. 14th Asian Conference on Computer Vision,Perth,2019:622-637.
|
[23] |
SCHLEGL T,SEEBÖCK P,WALDSTEIN S M,et al. F-AnoGAN:fast unsupervised anomaly detection with generative adversarial networks[J]. Medical Image Analysis,2019,54:30-44. doi: 10.1016/j.media.2019.01.010
|