Citation: | LIU Qing, LIU Junfeng. UWB based measurement system for pushing progress of fully mechanized working face[J]. Journal of Mine Automation,2024,50(4):33-40. doi: 10.13272/j.issn.1671-251x.2023120024 |
[1] |
刘正. 基于支架推移油缸行程的综采面推进距离算法研究[J]. 陕西煤炭,2022,41(5):113-117.
LIU Zheng. Research on algorithm of advancing distance of fully mechanized mining face based on the support pushing cylinder stroke[J]. Shaanxi Coal,2022,41(5):113-117.
|
[2] |
朱朋飞,郭龙真. 基于机器视觉的煤矿井下工作面推进度智能识别方法[J]. 煤矿机械,2023,44(8):200-203.
ZHU Pengfei,GUO Longzhen. Intelligent recognition method of advancing degree of coal mine underground working face based on machine vision[J]. Coal Mine Machinery,2023,44(8):200-203.
|
[3] |
翟新献,赵晓凡,郭钊洋,等. 综放开采上覆巨厚砾岩层变形垮落冲击相似模拟研究[J]. 采矿与安全工程学报,2023,40(5):1018-1030.
ZHAI Xinxian,ZHAO Xiaofan,GUO Zhaoyang,et al. Similar simulation study on deformation and collapsing impact of overlying hugely-thick conglomerate stratum in longwall top-coal caving mining[J]. Journal of Mining & Safety Engineering,2023,40(5):1018-1030.
|
[4] |
王朝引. 回采速度对厚煤层综采工作面冲击显现的影响[J]. 煤炭科学技术,2019,47(8):96-101.
WANG Chaoyin. Effect of mining speed on bump manifestation of fully-mechanized mining face in deep and thick coal seam[J]. Coal Science and Technology,2019,47(8):96-101.
|
[5] |
赵同彬,郭伟耀,韩飞,等. 工作面回采速度影响下煤层顶板能量积聚释放分析[J]. 煤炭科学技术,2018,46(10):37-44.
ZHAO Tongbin,GUO Weiyao,HAN Fei,et al. Analysis on energy accumulation and release of roof under influence of mining speed[J]. Coal Science and Technology,2018,46(10):37-44.
|
[6] |
刘金海,孙浩,田昭军,等. 煤矿冲击地压的推采速度效应及其动态调控[J]. 煤炭学报,2018,43(7):1858-1865.
LIU Jinhai,SUN Hao,TIAN Zhaojun,et al. Effect of advance speed on rock burst in coal mines and its dynamic control method[J]. Journal of China Coal Society,2018,43(7):1858-1865.
|
[7] |
李生鑫,孙珍平,刘春刚. 基于通风量与推进度的采空区自然发火数值模拟[J]. 煤矿安全,2020,51(9):196-200.
LI Shengxin,SUN Zhenping,LIU Chungang. Numerical simulation of spontaneous combustion in goaf based on ventilation and advancing degree[J]. Safety in Coal Mines,2020,51(9):196-200.
|
[8] |
曹拓拓,宣德全,范振. 易自燃煤层低推进度综放工作面采空区自燃防治技术[J]. 煤矿安全,2014,45(12):92-95.
CAO Tuotuo,XUAN Dequan,FAN Zhen. Goaf spontaneous combustion control technology of mechanized face of spontaneous combustion coal seam with low advance degree[J]. Safety in Coal Mines,2014,45(12):92-95.
|
[9] |
姜希印. 易自燃孤岛工作面安全推进速度研究[J]. 工矿自动化,2019,45(12):7-11.
JIANG Xiyin. Research on safe advancing speed of spontaneous combustion isolated working face[J]. Industry and Mine Automation,2019,45(12):7-11.
|
[10] |
季文博,齐庆新,李宏艳,等. 沙曲矿单一工作面推进度与瓦斯涌出量关系研究[J]. 煤炭工程,2012,44(12):95-98.
JI Wenbo,QI Qingxin,LI Hongyan,et al. Study on relationship between advancing rate of single coal mining face and gas emission value in Shaqu Mine[J]. Coal Engineering,2012,44(12):95-98.
|
[11] |
肖寒撼,李维光,华道友,等. 单一煤层采煤工作面瓦斯抽采量与推进度之间关系研究[J]. 中国煤炭,2018,44(3):140-142,146.
XIAO Hanhan,LI Weiguang,HUA Daoyou,et al. Study on the relationship between advance rate and gas drainage volume of single coal seam work face[J]. China Coal,2018,44(3):140-142,146.
|
[12] |
邓小明,邓志龙. 基于UWB技术的煤矿无线传感器网络设计研究[J]. 煤炭技术,2023,42(6):244-247.
DENG Xiaoming,DENG Zhilong. Design and research of coal mine wireless sensor network based on UWB technology[J]. Coal Technology,2023,42(6):244-247.
|
[13] |
薛光辉,李圆,张云飞. 基于激光靶向跟踪的悬臂式掘进机位姿测量系统研究[J]. 工矿自动化,2022,48(7):13-21.
XUE Guanghui,LI Yuan,ZHANG Yunfei. Research on pose measurement system of cantilever roadheader based on laser target tracking[J]. Journal of Mine Automation,2022,48(7):13-21.
|
[14] |
王俊秀. UWB测距技术在煤矿井下的应用[J]. 煤矿机械,2023,44(9):145-147.
WANG Junxiu. Application of UWB ranging technology in underground coal mine[J]. Coal Mine Machinery,2023,44(9):145-147.
|
[15] |
丁震,张雨晨. 煤矿井下粉尘浓度对UWB测距精度的影响研究[J]. 工矿自动化,2021,47(11):131-134.
DING Zhen,ZHANG Yuchen. Research on the influence of coal mine dust concentration on UWB ranging precision[J]. Industry and Mine Automation,2021,47(11):131-134.
|
[16] |
陈伟. 基于UWB技术的煤矿精确定位系统[J]. 煤矿机械,2023,44(5):177-180.
CHEN Wei. Coal mine precise positioning system based on UWB technology[J]. Coal Mine Machinery,2023,44(5):177-180.
|
[17] |
郭爱军. 基于UWB的PDOA与TOF煤矿井下联合定位方法[J]. 工矿自动化,2023,49(3):137-141.
GUO Aijun. A joint positioning method of PDOA and TOF in coal mines based on UWB[J]. Journal of Mine Automation,2023,49(3):137-141.
|
[18] |
郁露,唐超礼,黄友锐,等. 基于UWB和IMU的煤矿机器人紧组合定位方法研究[J]. 工矿自动化,2022,48(12):79-85.
YU Lu,TANG Chaoli,HUANG Yourui,et al. Research on tightly combined positioning method of coal mine robot based on UWB and IMU[J]. Journal of Mine Automation,2022,48(12):79-85.
|
[19] |
任昊誉,郭晨霞,杨瑞峰. 卡尔曼滤波提高UWB测距精度研究[J]. 电子测量技术,2021,44(18):111-115.
REN Haoyu,GUO Chenxia,YANG Ruifeng. Research on improving UWB ranging accuracy by Kalman filter[J]. Electronic Measurement Technology,2021,44(18):111-115.
|
[20] |
泰勒. 数字滤波器原理及应用[M]. 北京:国防工业出版社,2013.
TAYLOR F J. The principle and application of digital filter[M]. Beijing:National Defence Industry Press,2013.
|
[21] |
唐丽均,吴畏,刘世森. 基于灰色预测模型的井下精确人员定位方法[J]. 工矿自动化,2021,47(8):128-132.
TANG Lijun,WU Wei,LIU Shisen. Precise personnel positioning method in underground mine based on grey prediction model[J]. Industry and Mine Automation,2021,47(8):128-132.
|
[22] |
张倩. 基于改进伪中值滤波和非局部均值滤波的红外图像滤波方法[J]. 工矿自动化,2014,40(12):57-60.
ZHANG Qian. A filtering method for infrared image based on improved pseudo median filtering and non-local means filtering[J]. Industry and Mine Automation,2014,40(12):57-60.
|