Volume 50 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
ZHANG Xuhui, WANG Yue, YANG Wenjuan, et al. A mine image stitching method based on improved best seam-line[J]. Journal of Mine Automation,2024,50(4):9-17.  doi: 10.13272/j.issn.1671-251x.2023120003
Citation: ZHANG Xuhui, WANG Yue, YANG Wenjuan, et al. A mine image stitching method based on improved best seam-line[J]. Journal of Mine Automation,2024,50(4):9-17.  doi: 10.13272/j.issn.1671-251x.2023120003

A mine image stitching method based on improved best seam-line

doi: 10.13272/j.issn.1671-251x.2023120003
  • Received Date: 2023-12-02
  • Rev Recd Date: 2024-04-15
  • Available Online: 2024-05-10
  • The harsh environment of high dust and low lighting in the coal mine underground excavation working face results in low signal-to-noise ratio of the image, and a serious reduction in the number of effective feature points. The processed image has significant color difference and noise. When using the best seam-line algorithm for image stitching, there are problems such as fine section misalignment, unnatural transitions at the seam line, or obvious stitching traces. In order to solve the above problems, a mine image stitching method based on improved best seam-line is proposed. Firstly, the original image is subjected to HSV spatial transformation, and an improved Retinex algorithm is used for enhancement on the luminance component. Bilateral filtering is used instead of the center surround function to solve the halo problem caused by large brightness differences. The number of feature points extracted is effectively increased through the enhancement algorithm. Secondly, the SIFT algorithm is used to extract feature points, and cosine distance is used as the matching degree indicator. The method introduces pixel cosine similarity as a constraint, and uses morphological operations to improve color difference intensity, uses dynamic programming to search for the best seam-line to avoid misalignment at image stitching. Finally, combined with the gradual in and out algorithm, the image transition is smooth to achieve image fusion of the underground excavation working face. Experimental verification is conducted by simulating the actual working environment underground. The results show that the mine image stitching method based on the improved best seam-line avoids the phenomenon of misalignment stitching caused by color differences and noise compared to the traditional best seam-line algorithm. The image transition at the stitching seam is more natural, avoiding the generation of 'ghosts' and obvious stitching seams. The average gradient of the image is increased by about 2.38%, and the stitching time is increased by about 32.5%, making the fusion area smoother and more natural, improving the stitching quality.

     

  • loading
  • [1]
    王国法. 加快煤矿智能化建设 推进煤炭行业高质量发展[J]. 中国煤炭,2021,47(1):2-10. doi: 10.3969/j.issn.1006-530X.2021.01.002

    WANG Guofa. Speeding up intelligent construction of coal mine and promoting high-quality development of coal industry[J]. China Coal,2021,47(1):2-10. doi: 10.3969/j.issn.1006-530X.2021.01.002
    [2]
    张旭辉,杨红强,白琳娜,等. 煤矿掘进工作面低照度视频增强技术研究[J]. 煤田地质与勘探,2023,51(1):309-316.

    ZHANG Xuhui,YANG Hongqiang,BAI Linna,et al. Research on low illumination video enhancement technology in coal mine heading face[J]. Coal Geology & Exploration,2023,51(1):309-316.
    [3]
    王国法,张良,李首滨,等. 煤矿无人化智能开采系统理论与技术研发进展[J]. 煤炭学报,2023,48(1):34-53.

    WANG Guofa,ZHANG Liang,LI Shoubin,et al. Progresses in theory and technological development of unmanned smart mining system[J]. Journal of China Coal Society,2023,48(1):34-53.
    [4]
    YUAN Yiting,FANG Faming,ZHANG Guixu. Superpixel-based seamless image stitching for UAV images[J]. IEEE Transactions on Geoscience and Remote Sensing,2021,59(2):1565-1576. doi: 10.1109/TGRS.2020.2999404
    [5]
    ZARAGOZA J,CHIN T J,TRAN Q H,et al. As-projective-as-possible image stitching with moving DLT[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(7). DOI: 10.1109/TPAMI.2013.247.
    [6]
    张晶晶,翟东海,黄莉芝,等. 基于特征分块的视差图像拼接算法[J]. 计算机工程,2018,44(5):220-226.

    ZHANG Jingjing,ZHAI Donghai,HUANG Lizhi,et al. Parallax image stitching algorithm based on feature blocking[J]. Computer Engineering,2018,44(5):220-226.
    [7]
    DUPLAQUET M L,PARK S K,JUDAY R D. Building large image mosaics with invisible seam lines[C]. Proceedings of SPIE,1998. DOI: 10.1117/12.316427.
    [8]
    瞿中,乔高元,林嗣鹏. 一种消除图像拼接缝和“鬼影”的快速拼接算法[J]. 计算机科学,2015,42(3):280-283.

    QU Zhong,QIAO Gaoyuan,LIN Sipeng. Fast image stitching algorithm eliminates seam line and ghosting[J]. Computer Science,2015,42(3):280-283.
    [9]
    袁怡婷. 基于最佳缝合线的大视差图像拼接[D]. 上海:华东师范大学,2020.

    YUAN Yiting. Optimal seam based image stitching with large parallax[D]. Shanghai:East China Normal University,2020.
    [10]
    张翔,王伟,肖迪. 基于改进最佳缝合线的图像拼接方法[J]. 计算机工程与设计,2018,39(7):1964-1970.

    ZHANG Xiang,WANG Wei,XIAO Di. Image mosaic method based on improved best seam-line[J]. Computer Engineering and Design,2018,39(7):1964-1970.
    [11]
    RAHMAN Z,JOBSON D,WOODELL G. Multiscale Retinex for color image enhancement[C]. 3rd IEEE International Conference on Image Processing,Lausanne,1996:1003-1006.
    [12]
    LAND E H,MCCANN J J. Lightness and Retinex theory[J]. Journal of the Optical Society of America,1971,61(1):1-11. doi: 10.1364/JOSA.61.000001
    [13]
    刘晓阳,乔通,乔智. 基于双边滤波函数和Retinex算法的矿井图像增强方法[J]. 工矿自动化,2017,43(2):49-54.

    LIU Xiaoyang,QIAO Tong,QIAO Zhi. Image enhancement method of mine based on bilateral filtering and Retinex algorithm[J]. Industry and Mine Automation,2017,43(2):49-54.
    [14]
    LI Zhengguo,SHU Haiyan,ZHENG Chaobing. Multi-scale single image dehazing using laplacian and gaussian pyramids[J]. IEEE Transactions on Image Processing,2021,30:9270-9279.
    [15]
    张书霞,左海平. SIFT特征匹配算法研究[J]. 现代计算机(专业版),2010(7):64-67.

    ZHANG Shuxia,ZUO Haiping. Research on SIFT algorithm of feature matching[J]. Modern Computer,2010(7):64-67.
    [16]
    CAO Mingwei,JIA Wei,LYU Zhihan,et al. Two-pass K nearest neighbor search for feature tracking[J]. IEEE Access,2018(6):72939-72951.
    [17]
    SHENG Haiyan,WEI Shimin,YU Xiuli,et al. Research on binocular visual system of robotic arm based on improved SURF algorithm[J]. IEEE Sensors Journal,2020,20(20):11849-11855. doi: 10.1109/JSEN.2019.2951601
    [18]
    杜港,侯凌燕,佟强,等. 基于BRISK和改进RANSAC算法的图像拼接[J]. 液晶与显示,2022,37(6):758-767. doi: 10.37188/CJLCD.2021-0292

    DU Gang,HOU Lingyan,TONG Qiang,et al. Image mosaicing based on BRISK and improved RANSAC algorithm[J]. Chinese Journal of Liquid Crystals and Displays,2022,37(6):758-767. doi: 10.37188/CJLCD.2021-0292
    [19]
    邹攀红,孙晓燕,张雄伟,等. 一种基于数学形态学的二值图像去噪算法[J]. 微计算机信息,2010,26(32):202-203,206.

    ZOU Panhong,SUN Xiaoyan,ZHANG Xiongwei,et al. A noise reduction algorithm for binary image based on mathematical morphology[J]. Microcomputer Information,2010,26(32):202-203,206.
    [20]
    卢泉,杨振华,黄粒峰. 改进最佳缝合线的红外图像拼接方法[J]. 红外技术,2022,44(6):580-586.

    LU Quan,YANG Zhenhua,HUANG Lifeng. Infrared image mosaic method for improving the best seam-line[J]. Infrared Technology,2022,44(6):580-586.
    [21]
    罗永涛,王艳,张红民. 结合最佳缝合线和改进渐入渐出法的图像拼接算法[J]. 红外技术,2018,40(4):382-387.

    LUO Yongtao,WANG Yan,ZHANG Hongmin. Image-stitching algorithm by combining the optimal seam and an improved gradual fusion method[J]. Infrared Technology,2018,40(4):382-387.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (151) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return