Volume 50 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
LIU Zhixiang, SUN Zhan, YIN Jiakuo, et al. Experimental study on coal rock recognition based on infrared thermal imaging and vibration signals[J]. Journal of Mine Automation,2024,50(4):78-83, 152.  doi: 10.13272/j.issn.1671-251x.2023110029
Citation: LIU Zhixiang, SUN Zhan, YIN Jiakuo, et al. Experimental study on coal rock recognition based on infrared thermal imaging and vibration signals[J]. Journal of Mine Automation,2024,50(4):78-83, 152.  doi: 10.13272/j.issn.1671-251x.2023110029

Experimental study on coal rock recognition based on infrared thermal imaging and vibration signals

doi: 10.13272/j.issn.1671-251x.2023110029
  • Received Date: 2023-11-09
  • Rev Recd Date: 2024-04-27
  • Available Online: 2024-05-10
  • In response to the difficulties in practical application, susceptibility to signal interference, high cost, and complex implementation of existing coal rock recognition technologies, this paper theoretically analyzes the relationship between coal rock cutting heat production and coal rock hardness. The paper proves the rationality of using infrared thermal imaging to obtain cutting temperature changes for coal rock recognition. A coal rock cutting test bench is built for roadheader. Long-term cutting tests are conducted on ordinary coal seams, coal rock interfaces, and sandstone layers with different hardness. The cutting temperature and vibration signals of the cutting head are obtained through infrared thermal imaging and vibration sensors, and their change patterns are analyzed. The research results indicate the following points. ① As the cutting time increases, the cutting temperature gradually increases. The higher the hardness of coal rock, the higher the cutting temperature, and the faster the rate of increase in cutting temperature. At the initial stage of cutting, coal and rock cannot be recognized by cutting temperature, but during stable cutting, coal and rock can be recognized based on cutting temperature features. ② The vibration intensity of the cutting head increases with the increase of coal rock hardness, but does not show a significant change with the increase of cutting time. Therefore, it can compensate for the lack of recognition of coal rock through cutting temperature at the beginning stage of cutting.③ Accurate recognition of coal and rock cannot be achieved through a single cutting temperature or vibration intensity. Therefore, coal and rock can be recognized through vibration intensity during the initial cutting stage and frequent flash temperatures. In the stable cutting stage, coal and rock can be recognized through temperature obtained from infrared thermal imaging.

     

  • loading
  • [1]
    王虹,陈明军,张小峰. 我国煤矿快速掘进20 a发展与展望[J]. 煤炭学报,2024,49(2):1199-1213.

    WANG Hong,CHEN Mingjun,ZHANG Xiaofeng. Twenty years development and prospect of rapid coal mine roadway excavation in China[J]. Journal of China Coal Society,2024,49(2):1199-1213.
    [2]
    才庆祥,陈彦龙. 中国露天煤矿70年成就回顾及高质量发展架构体系[J]. 煤炭学报,2024,49(1):235-260.

    CAI Qingxiang,CHEN Yanlong. Review of 70 years' achievements and high-quality development architecture system of surface coal mining in China[J]. Journal of China Coal Society,2024,49(1):235-260.
    [3]
    杨健健,张强,王超,等. 煤矿掘进机的机器人化研究现状与发展[J]. 煤炭学报,2020,45(8):2995-3005.

    YANG Jianjian,ZHANG Qiang,WANG Chao,et al. Status and development of robotization research on roadheader for coal mines[J]. Journal of China Coal Society,2020,45(8):2995-3005.
    [4]
    王国法,杜毅博. 智慧煤矿与智能化开采技术的发展方向[J]. 煤炭科学技术,2019,47(1):1-10.

    WANG Guofa,DU Yibo. Development direction of intelligent coal mine and intelligent mining technology[J]. Coal Science and Technology,2019,47(1):1-10.
    [5]
    袁亮,张平松. 煤矿透明地质模型动态重构的关键技术与路径思考[J]. 煤炭学报,2023,48(1):1-14.

    YUAN Liang,ZHANG Pingsong. Key technology and path thinking of dynamic reconstruction of mine transparent geological model[J]. Journal of China Coal Society,2023,48(1):1-14.
    [6]
    石智军,姚克,姚宁平,等. 我国煤矿井下坑道钻探技术装备40年发展与展望[J]. 煤炭科学技术,2020,48(4):1-34.

    SHI Zhijun,YAO Ke,YAO Ningping,et al. 40 years of development and prospect on underground coal mine tunnel drilling technology and equipment in China[J]. Coal Science and Technology,2020,48(4):1-34.
    [7]
    李晓豁,闫建伟,张惠波,等. 割岩截齿的应力分布及其载荷的仿真研究[J]. 计算机仿真,2011,28(11):405-408.

    LI Xiaohuo,YAN Jianwei,ZHANG Huibo,et al. Simulation and research on stress distribution and loads on pick cutting rock[J]. Computer Simulation,2011,28(11):405-408.
    [8]
    张婷. 基于变换域与高斯混合模型聚类的煤岩识别方法[J]. 煤炭技术,2018,37(11):320-323.

    ZHANG Ting. Coal and rock recognition method based on transform domain and clustering of Gaussian mixture model[J]. Coal Technology,2018,37(11):320-323.
    [9]
    田立勇,毛君,王启铭. 基于采煤机摇臂惰轮轴受力分析的综合煤岩识别方法[J]. 煤炭学报,2016,41(3):782-787.

    TIAN Liyong,MAO Jun,WANG Qiming. Coal and rock identification method based on the force of idler shaft in shearer's ranging arm[J]. Journal of China Coal Society,2016,41(3):782-787.
    [10]
    刘万里,马修泽,张学亮. 基于探地雷达的特厚煤层厚度动态探测技术[J]. 煤炭学报,2021,46(8):2706-2714.

    LIU Wanli,MA Xiuze,ZHANG Xueliang. Dynamic detection technology of extra-thick coal seam thickness based on ground penetrating radar[J]. Journal of China Coal Society,2021,46(8):2706-2714.
    [11]
    李力,欧阳春平. 基于超声相控阵的煤岩界面识别研究[J]. 中国矿业大学学报,2017,46(3):485-492.

    LI Li,OUYANG Chunping. Research on coal-rock interface recognition based on ultrasonic phased array[J]. Journal of China University of Mining & Technology,2017,46(3):485-492.
    [12]
    王海舰,黄梦蝶,高兴宇,等. 考虑截齿损耗的多传感信息融合煤岩界面感知识别[J]. 煤炭学报,2021,46(6):1995-2008.

    WANG Haijian,HUANG Mengdie,GAO Xingyu,et al. Coal-rock interface recognition based on multi-sensor information fusion considering pick wear[J]. Journal of China Coal Society,2021,46(6):1995-2008.
    [13]
    吴德忠,刘泉声,黄兴,等. 基于边界跟踪和神经网络的煤岩界面识别方法研究[J]. 煤炭工程,2021,53(6):140-146.

    WU Dezhong,LIU Quansheng,HUANG Xing,et al. Coal-rock interface recognition method based on boundary tracking algorithm and artificial neural network[J]. Coal Engineering,2021,53(6):140-146.
    [14]
    SI Lei,XIONG Xiangxiang,WANG Zhongbin,et al. A deep convolutional neural network model for intelligent discrimination between coal and rocks in coal mining face[J]. Mathematical Problems in Engineering,2020(2):1-12.
    [15]
    孙传猛,王燕平,王冲,等. 融合改进YOLOv3与三次样条插值的煤岩界面识别方法[J]. 采矿与岩层控制工程学报,2022,4(1):81-90.

    SUN Chuanmeng,WANG Yanping,WANG Chong,et al. Coal-rock interface identification method based on improved YOLOv3 and cubic spline interpolation[J]. Journal of Mining and Strata Control Engineering,2022,4(1):81-90.
    [16]
    张强,刘志恒,王海舰,等. 基于截齿振动及温度特性的煤岩识别研究[J]. 煤炭科学技术,2018,46(3):1-9,18.

    ZHANG Qiang,LIU Zhiheng,WANG Haijian,et al. Study on coal and rock identification based on vibration and temperature features of picks[J]. Coal Science and Technology,2018,46(3):1-9,18.
    [17]
    王增才,富强. 自然γ射线穿透煤层及支架顶梁衰减规律[J]. 辽宁工程技术大学学报(自然科学版),2006,25(6):804-807.

    WANG Zengcai,FU Qiang. Attenuation of natural γ ray passing through coal seam and hydraulic support[J]. Journal of Liaoning Technical University(Natural Science),2006,25(6):804-807.
    [18]
    LIU Guanhua,LIU Zhentang,FENG Junjun,et al. Experimental research on the ultrasonic attenuation mechanism of coal[J]. Journal of Geophysics and Engineering,2017,14(3):502-512. doi: 10.1088/1742-2140/aa5f23
    [19]
    LIU Yanbing,DHAKAL S,HAO Binyao. Coal and rock interface identification based on wavelet packet decomposition and fuzzy neural network[J]. Journal of Intelligent & Fuzzy Systems:Applications in Engineering and Technology,2020,38(4):3949-3959.
    [20]
    张德义,刘送永,贾新庆,等. 基于红外热像的夹矸巷道断面记忆截割试验研究[J]. 煤炭学报,2021,46(10):3377-3385.

    ZHANG Deyi,LIU Songyong,JIA Xinqing,et al. Experimental study on memory cutting of roadway cross-section containing gangue based on infrared thermography[J]. Journal of China Coal Society,2021,46(10):3377-3385.
    [21]
    路红蕊,童敏明,刘栋. 基于钻头振动特性的采煤机煤岩识别研究[J]. 煤炭技术,2018,37(3):242-245.

    LU Hongrui,TONG Minming,LIU Dong. Research on coal-rock recognition based on vibration characteristics of coal shearer drill[J]. Coal Technology,2018,37(3):242-245.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (136) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return