Citation: | LI Mingfeng, LI Yan, LIU Yong, et al. Underground personnel positioning system based on 5G+UWB and inertial navigation technology[J]. Journal of Mine Automation,2024,50(1):25-34. doi: 10.13272/j.issn.1671-251x.2023100066 |
[1] |
刘宇,李瑶,路永乐,等. 基于MEMS传感器组合的行人室内高度定位算法[J]. 压电与声光,2019,41(5):690-693,746.
LIU Yu,LI Yao,LU Yongle,et al. Pedestrian indoor height localization algorithm based on MEMS sensor combination[J]. Piezoelectrics & Acoustooptics,2019,41(5):690-693,746.
|
[2] |
汪义庭. 基于UWB的无线室内定位系统设计与实现[D]. 淮南:安徽理工大学,2019.
WANG Yiting. Design and implementation of wireless indoor positioning system based on UWB[D]. Huainan:Anhui University of Science and Technology,2019.
|
[3] |
WANG Yixin,YE Qiang,CHENG Jie,et al. RSSI-based bluetooth indoor localization[C]. 11th International Conference on Mobile Ad-hoc and Sensor Networks ,Shenzhen,2015:165-171.
|
[4] |
LI Qiyue,LI Wei,SUN Wei,et al. Fingerprint and assistant nodes based WiFi localization in complex indoor environment[J]. IEEE Access,2016,4:2993-3004. doi: 10.1109/ACCESS.2016.2579879
|
[5] |
GHOLOOBI A,STAVROU S. Accelerating TOA/TDOA packet based localization methods[C]. IEEE Conference on Wireless Sensors ,Subang,2014:31-35.
|
[6] |
吕瑞杰. 煤矿井下UWB信号路径损耗测量及中心频率选择[J]. 工矿自动化,2023,49(4):147-152.
LYU Ruijie. Measurement of UWB signal path loss and center frequency selection in underground coal mines[J]. Journal of Mine Automation,2023,49(4):147-152.
|
[7] |
ZENG Zhuoqi,LIU S,WANG Lei. UWB NLOS identification with feature combination selection based on genetic algorithm[C]. IEEE International Conference on Consumer Electronics,Las Vegas,2019. DOI: 10.1109/ICCE.2019.8662065.
|
[8] |
孙建强,尚俊娜,刘新华,等. 一种基于模糊推理的改进加权KNN定位算法[J]. 传感技术学报,2020,33(6):882-888. doi: 10.3969/j.issn.1004-1699.2020.06.015
SUN Jianqiang,SHANG Junna,LIU Xinhua,et al. An improved weighted KNN location algorithm based on fuzzy reasoning[J]. Chinese Journal of Sensors and Actuators,2020,33(6):882-888. doi: 10.3969/j.issn.1004-1699.2020.06.015
|
[9] |
孙晔,肖竹,李小蓓,等. UWB定位中基于神经网络的TDOA解算方法[J]. 航空计算技术,2019,49(2):6-10. doi: 10.3969/j.issn.1671-654X.2019.02.002
SUN Ye,XIAO Zhu,LI Xiaobei,et al. Neural network based TDOA calculation algorithm in a UWB system[J]. Aeronautical Computing Technique,2019,49(2):6-10. doi: 10.3969/j.issn.1671-654X.2019.02.002
|
[10] |
STRAETEN M,AHAMED M J. Intuitive ultrasonic INS augmentation for pedestrian path tracking and navigation[J]. Sensors and Actuators A Physical,2019. DOI: 10.1016/j.sna.2019.111641.
|
[11] |
LIU Fei,LI Xin,WANG Jian,et al. An adaptive UWB/MEMS-IMU complementary kalman filter for indoor location in NLOS environment[J]. Remote Sensing,2019,11(22). DOI: 10.3390/rs11222628.
|
[12] |
FENG Daquan,WANG Chunqi,HE Chunlong,et al. Kalman-filter-based integration of IMU and UWB for high-accuracy indoor positioning and navigation[J]. IEEE Internet of Things Journal,2020,7(4):3133-3146. doi: 10.1109/JIOT.2020.2965115
|
[13] |
WANG Tianyu,HU Keke,LI Zhihang,et al. A semi-supervised learning approach for UWB ranging error mitigation[J]. IEEE Wireless Communications Letters,2021,10(3):688-691. doi: 10.1109/LWC.2020.3046531
|
[14] |
SANG C L,STEINHAGEN B,HOMBURG J D,et al. Identification of NLOS and multi-path conditions in UWB localization using machine learning methods[J]. Applied Sciences,2020,10(11). DOI: 10.3390/app10113980.
|
[15] |
FERREIRA A,FERNANDES D,BRANCO S,et al. Feature selection for real-time NLOS identification and mitigation for body-mounted UWB transceivers[J]. IEEE Transactions on Instrumentation and Measurement,2021,70. DOI: 10.1109/TIM.2021.3070619.
|
[16] |
TRAN D H,CHUNG B D,JANG Y M. GAN-based data augmentation for UWB NLOS identification using machine learning[C]. International Conference on Artificial Intelligence in Information and Communication ,Jeju Island,2022:417-420.
|
[17] |
JIANG Changhui,SHEN Jichun,CHEN Shuai,et al. UWB NLOS/LOS classification using deep learning method[J]. IEEE Communications Letters,2020,24(10):2226-2230. doi: 10.1109/LCOMM.2020.2999904
|
[18] |
YANG Bo,LI Jun,SHAO Zhanpeng,et al. Robust UWB indoor localization for NLOS scenes via learning spatial-temporal features[J]. IEEE Sensors Journal,2022,22(8):7990-8000. doi: 10.1109/JSEN.2022.3156971
|
[19] |
CHEN Shanzhi,KANG Shaoli. A tutorial on 5G and the progress in China[J]. Frontiers of Information Technology & Electronic Engineering,2018,19(3):309-321.
|
[20] |
CHU Yeping,LIN Pan,LENG Kaijun,et al. Research on key technologies of service quality optimization for industrial IoT 5G network for intelligent manufacturing[J]. The International Journal of Advanced Manufacturing Technology,2022,123(7/8). DOI: 10.1007/S00170-022-10418-6.
|
[21] |
霍振龙. 5G专网技术及煤矿5G专网方案分析[J]. 工矿自动化,2022,48(11):6-10,19.
HUO Zhenlong. Analysis of 5G private network technology and coal mine 5G private network scheme[J]. Journal of Mine Automation,2022,48(11):6-10,19.
|
[22] |
ELSANHOURY M,MAKELA P,KOLJONEN J,et al. Precision positioning for smart logistics using ultra-wideband technology-based indoor navigation:a review[J]. IEEE Access,2022,10:44413-44445. doi: 10.1109/ACCESS.2022.3169267
|
[23] |
LI Yinya,QI Guoqing,SHENG Andong. Performance metric on the best achievable accuracy for hybrid TOA/AOA target localization[J]. IEEE Communications Letters,2018,22(7):1474-1477. doi: 10.1109/LCOMM.2018.2833544
|
[24] |
蓝威涛,张卫强,罗健宇. 一种自适应智能三边定位算法的设计与实现[J]. 传感技术学报,2017,30(7):1089-1094.
LAN Weitao,ZHANG Weiqiang,LUO Jianyu. Design and implementation of adaptive intelligent trilateral localization algorithm[J]. Chinese Journal of Sensors and Actuators,2017,30(7):1089-1094.
|
[25] |
王鼎杰,吕汉峰,吴杰. 基于微惯导随机误差时间序列建模的改进组合导航方法[J]. 国防科技大学学报,2016,38(6):64-69. doi: 10.11887/j.cn.201606011
WANG Dingjie,LYU Hanfeng,WU Jie. ARMA-based stochastic modeling method for improving the performance of low-cost MIMU/GNSS integration[J]. Journal of National University of Defense Technology,2016,38(6):64-69. doi: 10.11887/j.cn.201606011
|