Construction of knowledge graph for fully mechanized coal mining equipment based on joint coding
-
Graphical Abstract
-
Abstract
Using knowledge graph technology for data management can achieve effective representation of fully mechanized coal mining equipment. The information with deep mining value can be obtained. The imbalanced data of fully mechanized coal mining equipment and the limited number of entities in certain categories of equipment affect the precision of entity recognition models. In order to solve the above problems, a knowledge graph construction method for fully mechanized coal mining equipment based on joint coding is proposed. Firstly, the fully mechanized coal mining equipment ontology model is constructed, determining the concepts and relationships. Secondly, the entity recognition model is designed. The model uses Token Embedding, Position Embedding, Sentence Embedding, and Task Embedding 4-layer Embedding structures and Transformer Encoder to encode fully mechanized coal mining equipment data, extract dependency relationships and contextual information features between words. The model introduces a Chinese character library, using the Word2vec model for encoding, extracting semantic rules between characters, and solving the problem of rare characters in fully mechanized coal mining equipment data. The model uses the GRU model to jointly encode the data of fully mechanized coal mining equipment and the character vectors encoded in the font library, and fuse vector features. The model uses the Lattice-LSTM model for character decoding to obtain entity recognition results. Finally, the model uses graph database technology to store and organize extracted knowledge in the form of graphs, completing the construction of knowledge graphs. Experimental verification is conducted on the dataset of fully mechanized coal mining equipment. The results show that the method improves the recognition accuracy of fully mechanized coal mining equipment entities by more than 1.26% compared to existing methods, which to some extent alleviates the low accuracy problem caused by insufficient data when constructing a knowledge graph of fully mechanized coal mining equipment in a small sample situation.
-
-