Citation: | DU Yuxin, ZHANG He, WANG Shuchen, et al. Research status and development trend of visual processing technology for fully mechanized excavation systems[J]. Journal of Mine Automation,2023,49(11):22-38, 75. doi: 10.13272/j.issn.1671-251x.2023090042 |
[1] |
王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1-27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001
WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1-27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001
|
[2] |
中国煤炭工业协会. 2022煤炭行业发展年度报告[R/OL]. [2023-08-10]. http://www.coalchina.org.cn/index.php?m=content&c=index&a=show&catid=464&id=146683.
China National Coal Association. 2022 annual report on the development of the coal industry[R/OL]. [2023-08-10]. http://www.coalchina.org.cn/index.php?m=content&c=index&a=show&catid= 464&id=146683.
|
[3] |
王琦,康红普,王步康,等. 快速掘进工作面围岩分区平行锚固技术[J]. 岩石力学与工程学报,2023,42(11):2739-2752. doi: 10.13722/j.cnki.jrme.2022.1315
WANG Qi,KANG Hongpu,WANG Bukang,et al. Research on surrounding rock partitioned parallel anchoring technology in rapid heading faces[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(11):2739-2752. doi: 10.13722/j.cnki.jrme.2022.1315
|
[4] |
张凯. 基于顶板视觉的掘进机空间位姿检测方法研究[D]. 北京:煤炭科学研究总院,2021.
ZHANG Kai. Research on spatial pose detection method of roadheader based on roof vision[D]. Beijing:China Coal Research Institute,2021.
|
[5] |
MA Xianmin. Coal gangue image identification and classification with wavelet transform[C]. 2009 Second International Conference on Intelligent Computation Technology and Automation,Changsha,2009:562-565.
|
[6] |
冯媛. 融合感知的带式输送机煤流量监控系统[D]. 淮南:安徽理工大学,2020.
FENG Yuan. Coal flow monitoring system of belt conveyor with integrated perception[D]. Huainan:Anhui University of Science & Technology,2020.
|
[7] |
LEI Wanzhong,LIU Jingbo. Early fire detection in coalmine based on video processing[C]// YANG G. Proceedings of the 2012 International Conference on Communication,Electronics and Automation Engineering. Berlin:Springer,2013:239-245.
|
[8] |
王星. 基于视觉的煤矿井下带式输送机异常状态监测方法研究[D]. 太原:太原科技大学,2017.
WANG Xing. Research on monitoring method for abnormal state of coal mine belt conveyor based on vision [D]. Taiyuan:Taiyuan University of Science and Technology,2017.
|
[9] |
贾倪. 矿井视频人员目标跟踪与煤岩图像识别方法研究[D]. 北京:中国矿业大学(北京),2015.
JIA Ni. Research on visual personnel target tracking and coal-rock images recognition methods in coal mine[D]. Beijing:China University of Mining and Technology-Beijing,2015.
|
[10] |
SZURGACZ D,ZHIRONKIN S,VÖTH S,et al. Thermal imaging study to determine the operational condition of a conveyor belt drive system structure[J]. Energies,2021,14(11). DOI: 10.3390/en14113258.
|
[11] |
TOMESCU C,PRODAN M,VATAVU N,et al. Monitoring the work environment using thermal imaging cameras in order to prevent the self-ignition of coal[J]. Environmental Engineering and Management Journal,2017,16(6):1389-1393. doi: 10.30638/eemj.2017.150
|
[12] |
张超. 悬臂式掘进机双目视觉与捷联惯导组合定位技术研究[D]. 西安:西安科技大学,2020.
ZHANG Chao. Research on integrated positioning technology of boom-type roadheader based on binocular vision and strapdown inertial navigation[D]. Xi'an:Xi'an University of Science and Technology,2020.
|
[13] |
ZHANG Lei,HAO Shangkai,WANG Haosheng,et al. Safety warning of mine conveyor belt based on binocular vision[J]. Sustainability,2022,14(20). DOI: 10.3390/SU142013276.
|
[14] |
陈清华,张旭. 基于双目立体匹配的巷道三维重建研究[J]. 激光杂志,2022,43(10):208-212. doi: 10.14016/j.cnki.jgzz.2022.10.208
CHEN Qinghua,ZHANG Xu. Research on three-dimenional reconstruction of roadway based on binocular stereo matching[J]. Laser Journal,2022,43(10):208-212. doi: 10.14016/j.cnki.jgzz.2022.10.208
|
[15] |
USAMENTIAGA R,GARCÍA D F. Multi-camera calibration for accurate geometric measurements in industrial environments[J]. Measurement,2019,134:345-358. doi: 10.1016/j.measurement.2018.10.087
|
[16] |
董建伟,李海滨,孔德明,等. 基于多视图立体视觉的煤场三维建模方法研究[J]. 燕山大学学报,2016,40(2):136-141. doi: 10.3969/j.issn.1007-791X.2016.02.006
DONG Jianwei,LI Haibin,KONG Deming,et al. Research on 3D modeling of coal field based on multi-view stereo vision method[J]. Journal of Yanshan University,2016,40(2):136-141. doi: 10.3969/j.issn.1007-791X.2016.02.006
|
[17] |
JANISZEWSKI M,TORKAN M,UOTINEN L,et al. Rapid photogrammetry with a 360-degree camera for tunnel mapping[J]. Remote Sensing,2022,14(21). DOI: 10.3390/rs14215494.
|
[18] |
MAO Qinghua,ZHANG Fei,ZHANG Xuhui,et al. Deviation correction path planning method of full-width horizontal axis roadheader based on improved particle swarm optimization algorithm[J]. Mathematical Problems in Engineering,2023. DOI: 10.1155/2023/3373873.
|
[19] |
ZHAI Guodong,ZHANG Wentao,HU Wenyuan,et al. Coal mine rescue robots based on binocular vision:a review of the state of the art[J]. IEEE Access,2020,8:130561-130575. doi: 10.1109/ACCESS.2020.3009387
|
[20] |
RAVAL S,BANERJEE B P,SINGH S K,et al. A preliminary investigation of mobile mapping technology for underground mining[C]. IEEE International Geoscience and Remote Sensing Symposium,Yokohama,2019:6071-6074.
|
[21] |
WANG Yuan,GUO Wei,ZHAO Shuanfeng,et al. A scraper conveyor coal flow monitoring method based on speckle structured light data[J]. Applied Sciences,2022,12(14). DOI: 10.3390/app12146955.
|
[22] |
朱蓉军,夏晶,赵思远,等. 钻锚机器人人机安全避碰方法[J]. 西安科技大学学报,2020,40(5):823-830. doi: 10.13800/j.cnki.xakjdxxb.2020.0510
ZHU Rongjun,XIA Jing,ZHAO Siyuan,et al. Human-robot safety collision avoidance method for drill-anchor robot[J]. Journal of Xi'an University of Science and Technology,2020,40(5):823-830. doi: 10.13800/j.cnki.xakjdxxb.2020.0510
|
[23] |
李浩天. 矿井巷道喷浆机械手壁面感知技术研究[D]. 徐州:中国矿业大学,2022.
LI Haotian. Research on wall sensing technology of mine roadway slurry spraying manipulator[D]. Xuzhou:China University of Mining and Technology,2022.
|
[24] |
MORAVEC H. Obstacle avoidance and navigation in the real world by a seeing robot rover[D]. Palo Alto:Stanford University,1980.
|
[25] |
YANG Wenjuan,ZHANG Xuhui,MA Hongwei,et al. Geometrically driven underground camera modeling and calibration with coplanarity constraints for a boom-type roadheader[J]. IEEE Transactions on Industrial Electronics,2020,68(9):8919-8929.
|
[26] |
张旭辉,谢楠,张超,等. 悬臂式掘进机截割头位姿视觉测量系统改进[J]. 工矿自动化,2021,47(7):1-7. doi: 10.13272/j.issn.1671-251x.2021010057
ZHANG Xuhui,XIE Nan,ZHANG Chao,et al. Improvement of vision measurement system for cutting head position of boom-type roadheader[J]. Industry and Mine Automation,2021,47(7):1-7. doi: 10.13272/j.issn.1671-251x.2021010057
|
[27] |
DU Yuxin,TONG Minming,ZHOU Lingling,et al. Edge detection based on Retinex theory and wavelet multiscale product for mine images[J]. Applied Optics,2016,55(34):9625-9637. doi: 10.1364/AO.55.009625
|
[28] |
YANG Wenjuan,ZHANG Xuhui,MA Hongwei,et al. Laser beams-based localization methods for boom-type roadheader using underground camera non-uniform blur model[J]. IEEE Access,2020,8:190327-190341. doi: 10.1109/ACCESS.2020.3032368
|
[29] |
张旭辉,王恒,沈奇峰,等. 悬臂式掘进机位姿视觉检测系统改进[J]. 工矿自动化,2022,48(5):58-64. doi: 10.13272/j.issn.1671-251x.2021100051
ZHANG Xuhui,WANG Heng,SHEN Qifeng,et al. Improvement of position and posture measurement system for boom-type roadheader based on machine vision[J]. Journal of Mine Automation,2022,48(5):58-64. doi: 10.13272/j.issn.1671-251x.2021100051
|
[30] |
崔玉明. 煤矿巷道掘进机视觉/惯性融合自主定位关键技术研究[D]. 徐州:中国矿业大学,2021.
CUI Yuming. Key technology research of visual/inertial fusion autonomous positioning for roadheader in coal mine[D]. Xuzhou:China University of Mining and Technology,2021.
|
[31] |
黄喆,燕庆德,邵震宇,等. 基于双相机标靶的直线顶管掘进机导向方法[J]. 激光与光电子学进展,2022,59(4):458-465.
HUANG Zhe,YAN Qingde,SHAO Zhenyu,et al. Guiding method of linear pipe jacking machine based on dual camera target[J]. Laser & Optoelectronics Progress,2022,59(4):458-465.
|
[32] |
WANG Lixin,HU Chengjun,PAN Gege,et al. Pose measurement technology of roadheader body based on fusion of visual and SINS[J]. Journal of Physics:Conference Series,2022,2363. DOI: 10.1088/1742-6596/2363/1/012014.
|
[33] |
YANG Wenjuan,ZHANG Xuhui,MA Hongwei,et al. Infrared LEDs-based pose estimation with underground camera model for boom-type roadheader in coal mining[J]. IEEE Access,2019,7:33698-33712. doi: 10.1109/ACCESS.2019.2904097
|
[34] |
徐剑坤. 基于机器视觉的巷道变形实时监测预警技术研究[D]. 徐州:中国矿业大学,2012.
XU Jiankun. Real-time monitoring and early warning roadway deformation based on machine vision[D]. Xuzhou:China University of Mining and Technology,2012.
|
[35] |
DU Yuxin,TONG Minming,LIU Ting,et al. Visual measurement system for roadheaders pose detection in mines[J]. Optical Engineering,2016,55(10). DOI: 10.1117/1.oe.55.10.104107.
|
[36] |
DU Yuxin,TONG Minming. Contour recognition of roadheader cutting head based on shape matching[J]. Pattern Analysis and Applications,2019,22:1643-1653. doi: 10.1007/s10044-019-00813-3
|
[37] |
HE Shangmeng,TONG Ziyuan,MA Guobin,et al. Research on stereo vision matching algorithm for rescue robot[C]. International Conference on Robotics and Automation Sciences,Hong Kong,2017:35-38.
|
[38] |
闫鹏鹏. 煤矿巷道复杂场景图像拼接方法研究[D]. 徐州:中国矿业大学,2021.
YAN Pengpeng. Research on image stitching method for the complicated scene of coalmine tunnel[D]. Xuzhou:China University of Mining and Technology,2021.
|
[39] |
吕志强. 复杂环境下煤矿皮带运输异物图像识别研究[D]. 徐州:中国矿业大学,2020.
LYU Zhiqiang. Research on image recognition of foreign bodies in the process of coal mine belt transportation in complex environment[D]. Xuzhou:China University of Mining and Technology,2020.
|
[40] |
杨冬建. 基于双目视觉的TBM换刀机器人末端定位研究[D]. 大连:大连理工大学,2021.
YANG Dongjian. Study on end positioning of TBM cutter changing robot based on binocular vision[D]. Dalian:Dalian University of Technology,2021.
|
[41] |
MANSOURI S S,KANELLAKIS C,GEORGOULAS G,et al. Towards MAV navigation in underground mine using deep learning[C]. IEEE International Conference on Robotics and Biomimetics,Kuala Lumpur,2018:880-885.
|
[42] |
ZHANG Rongchun,JING Meiru,YI Xuefeng,et al. Dense reconstruction for tunnels based on the integration of double-line parallel photography and deep learning[C]. ISPRS Congress,Nice,2022,43:1117-1123.
|
[43] |
YU Rui,FANG Xinqiu,HU Chengjun,et al. Research on positioning method of coal mine mining equipment based on monocular vision[J]. Energies,2022,15(21). DOI: 10.3390/en15218068.
|
[44] |
WU Hongzhuang,LIU Songyong,CHENG Cheng,et al. Multiscale variational autoencoder aided convolutional neural network for pose estimation of tunneling machine using a single monocular image[J]. IEEE Transactions on Industrial Informatics,2021,18(8):5161-5170.
|
[45] |
薛旭升,张旭辉,毛清华,等. 基于双目视觉的掘进机器人定位定向方法研究[J]. 西安科技大学学报,2020,40(5):781-789. doi: 10.13800/j.cnki.xakjdxxb.2020.0505
XUE Xusheng,ZHANG Xuhui,MAO Qinghua,et al. Localization and orientation method of roadheader robot based on binocular vision[J]. Journal of Xi'an University of Science and Technology,2020,40(5):781-789. doi: 10.13800/j.cnki.xakjdxxb.2020.0505
|
[46] |
ZHANG Wentao,ZHAI Guodong,YUE Zhongwen,et al. Research on visual positioning of a roadheader and construction of an environment map[J]. Applied Sciences,2021,11(11). DOI: 10.3390/app11114968.
|
[47] |
CHEN Hongyue,YANG Wei,MA Ying,et al. Multi-sensor fusion method for roadheader pose detection[J]. Mechatronics,2021,80. DOI: 10.1016/j.mechatronics.2021.102669.
|
[48] |
YANG Jinyong,ZHANG Guanqin,HUANG Zhe,et al. Research on position and orientation measurement method for roadheader based on vision/INS[C]. International Conference on Optical Instruments and Technology,Beijing,2017:25-36.
|
[49] |
谢楠. 单目视觉与激光雷达融合的巷道三维重建与掘进机定位方法[D]. 西安:西安科技大学,2021.
XIE Nan. Research on 3D reconstruction and roadheader positioning method of roadway based on monocular vision and laser radar fusion[D]. Xi'an:Xi'an University of Science and Technology,2021.
|
[50] |
杨金永. 煤矿掘进机动态位姿组合式测量方法的研究[D]. 天津:天津科技大学,2018.
YANG Jinyong. Study on combined measurement method of dynamic position and orientation for coal mine roadheader[D]. Tianjin:Tianjin University of Science and Technology,2018.
|
[51] |
田原. 基于机器视觉的掘进机空间位姿检测技术研究[J]. 矿山机械,2013,41(2):27-30. doi: 10.16816/j.cnki.ksjx.2013.02.009
TIAN Yuan. Research on automatic inspection of spatial attitude and position of roadheader based on machine vision technology[J]. Mining & Processing Equipment,2013,41(2):27-30. doi: 10.16816/j.cnki.ksjx.2013.02.009
|
[52] |
杨文辉. 双护盾硬岩隧道掘进机导向系统关键技术研究[D]. 天津:天津大学,2016.
YANG Wenhui. Research on the key techniques of the guidance system of double shield universal compact TBM[D]. Tianjin:Tianjin University,2016.
|
[53] |
杨文娟,张旭辉,张超,等. 基于三激光束标靶的煤矿井下长距离视觉定位方法[J]. 煤炭学报,2022,47(2):986-1001. doi: 10.13225/j.cnki.jccs.xr21.1762
YANG Wenjuan,ZHANG Xuhui,ZHANG Chao,et al. Long distance vision localization method based on triple laser beams target in coal mine[J]. Journal of China Coal Society,2022,47(2):986-1001. doi: 10.13225/j.cnki.jccs.xr21.1762
|
[54] |
QU Yuanyuan,YANG Teng,LI Tao,et al. Path tracking of underground mining boom roadheader combining BP neural network and state estimation[J]. Applied Sciences,2022,12(10). DOI: 10.3390/app12105165.
|
[55] |
OTHER R,RATH G,OLEARY P. Calibration verification of a mining machine using image processing[C]. Machine Vision Applications in Industrial Inspection XI,Santa Clara,2003:59-65.
|
[56] |
WANG Suyu,WU Miao. Cutting trajectory planning of sections with complex composition for roadheader[J]. Journal of Mechanical Engineering Science,2019,233(4):1441-1452. doi: 10.1177/0954406218768840
|
[57] |
张旭辉,赵建勋,张超,等. 悬臂式掘进机视觉伺服截割控制系统研究[J]. 煤炭科学技术,2022,50(2):263-270. doi: 10.13199/j.cnki.cst.2019-0628
ZHANG Xuhui,ZHAO Jianxun,ZHANG Chao,et al. Study on visual servo control system for cutting of cantilever roadheader[J]. Coal Science and Technology,2022,50(2):263-270. doi: 10.13199/j.cnki.cst.2019-0628
|
[58] |
张超,张旭辉,张楷鑫,等. 数字孪生驱动掘进机远程自动截割控制技术[J]. 工矿自动化,2020,46(9):15-20,32. doi: 10.13272/j.issn.1671-251x.17640
ZHANG Chao,ZHANG Xuhui,ZHANG Kaixin,et al. Digital twin driven remote automatic cutting control technology of roadheader[J]. Industry and Mine Automation,2020,46(9):15-20,32. doi: 10.13272/j.issn.1671-251x.17640
|
[59] |
CHELUSZKA P,JAGIEŁA-ZAJĄC A. Validation of a method for measuring the position of pick holders on a robotically assisted mining machine's working unit[J]. Energies,2022,15(1). DOI: 10.3390/en15010295.
|
[60] |
JAGIEŁA-ZAJĄC A,CHELUSZKA P. Measurement of the pick holders position on the side surface of the cutting head of a mining machine with the use of stereoscopic vision[C]. Scientific and Technical Conference on Innovative Mining Technologies,Szczyrk,2020:44-54.
|
[61] |
CHELUSZKA P,MANN R. Determination of boom vibrations of the road header during cutting based on the analysis of images from high-speed cameras[J]. New Trends in Production Engineering,2019,2(1):37-49. doi: 10.2478/ntpe-2019-0004
|
[62] |
CHELUSZKA P,MANN R. Vibration identification of the roadheader cutting head using high-speed cameras[C]. MATEC Web of Conferences,2019. DOI: 10.1051/matecconf/201925203018.
|
[63] |
杨健健,张强,王超,等. 煤矿掘进机的机器人化研究现状与发展[J]. 煤炭学报,2020,45(8):2995-3005. doi: 10.13225/j.cnki.jccs.2019.1452
YANG Jianjian,ZHANG Qiang,WANG Chao,et al. Status and development of robotization research on roadheader for coal mines[J]. Journal of China Coal Society,2020,45(8):2995-3005. doi: 10.13225/j.cnki.jccs.2019.1452
|
[64] |
张红,李晨阳. 基于光学图像的煤矸石识别方法综述[J]. 煤炭工程,2022,54(7):159-163.
ZHANG Hong,LI Chenyang. Review on coal gangue identification methods based on optical images[J]. Coal Engineering,2022,54(7):159-163.
|
[65] |
陈雪梅,张晞,徐莉莉,等. 煤与矸石分形维数的差异研究[J]. 煤炭科学技术,2017,45(7):196-199. doi: 10.13199/j.cnki.cst.2017.07.035
CHEN Xuemei,ZHANG Xi,XU Lili,et al. Study on fractal dimension differences of coal and rock[J]. Coal Science and Technology,2017,45(7):196-199. doi: 10.13199/j.cnki.cst.2017.07.035
|
[66] |
LI Man,DUAN Yong,HE Xianli,et al. Image positioning and identification method and system for coal and gangue sorting robot[J]. International Journal of Coal Preparation and Utilization,2022,42(4/6):1759-1777.
|
[67] |
HU Feng,ZHOU Mengran,YAN Pengcheng,et al. Multispectral imaging:a new solution for identification of coal and gangue[J]. IEEE Access,2019,7:169697-169704. doi: 10.1109/ACCESS.2019.2955725
|
[68] |
LIU Qiang,LI Jingao,LI Yusheng,et al. Recognition methods for coal and coal gangue based on deep learning[J]. IEEE Access,2021,9:77599-77610. doi: 10.1109/ACCESS.2021.3081442
|
[69] |
SU Lingling,CAO Xiangang,MA Hongwei,et al. Research on coal gangue identification by using convolutional neural network[C]. 2018 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference,Xi'an,2018:810-814.
|
[70] |
PU Yuanyuan,APEL D B,SZMIGIEL A,et al. Image recognition of coal and coal gangue using a convolutional neural network and transfer learning[J]. Energies,2019,12(9). DOI: 10.3390/en12091735.
|
[71] |
代伟,赵杰,杨春雨,等. 基于双目视觉深度感知的带式输送机煤量检测方法[J]. 煤炭学报,2017,42(增刊2):547-555. doi: 10.13225/j.cnki.jccs.2017.0389
DAI Wei,ZHAO Jie,YANG Chunyu,et al. Detection method of coal quantity in belt conveyor based on binocular vision depth perception[J]. Journal of China Coal Society,2017,42(S2):547-555. doi: 10.13225/j.cnki.jccs.2017.0389
|
[72] |
WANG Guimei,LI Xuehui,YANG Lijie. Dynamic coal quantity detection and classification of permanent magnet direct drive belt conveyor based on machine vision and deep learning[J]. International Journal of Pattern Recognition and Artificial Intelligence,2021,35(11). DOI: 10.1142/S0218001421520170.
|
[73] |
LI Jiacheng,ZHANG Junsheng,WANG Honglei,et al. Coal flow volume measurement of belt conveyor based on binocular vision and line structured light[C]. IEEE International Conference on Electrical Engineering and Mechatronics Technology,Qingdao,2021:636-639.
|
[74] |
周楠. 基于机器视觉的矿井环境三维重建研究[D]. 徐州:中国矿业大学,2022.
ZHOU Nan. Research on 3D reconstruction of mine environment based on machine vision[D]. Xuzhou:China University of Mining and Technology,2022.
|
[75] |
张雄. 视觉计算在煤矿巷道变形监测中的应用研究[D]. 西安:西安科技大学,2015.
ZHANG Xiong. Application and research of visual computing for deformation monitoring of coal mine roadway[D]. Xi'an:Xi'an University of Science and Technology,2015.
|
[76] |
李华,雷勇,甘创. 基于视觉辅助的隧道轮廓监测[J]. 机械工程学报,2018,54(1):90-98.
LI Hua,LEI Yong,GAN Chuang. Tunnel deformation monitoring based on vision assistant[J]. Journal of Mechanical Engineering,2018,54(1):90-98.
|
[77] |
DU Ting,WANG Dongxing,QIAN Xu. Study on 3-dimensional stereoscopic image model in intelligent coal mine[J]. Energy Reports,2022,8:291-299.
|
[78] |
邓军,李贝,王凯,等. 我国煤火灾害防治技术研究现状及展望[J]. 煤炭科学技术,2016,44(10):1-7,101. doi: 10.13199/j.cnki.cst.2016.10.001
DENG Jun,LI Bei,WANG Kai,et al. Research status and outlook on prevention and control technology of coal fire disaster in China[J]. Coal Science and Technology,2016,44(10):1-7,101. doi: 10.13199/j.cnki.cst.2016.10.001
|
[79] |
赵端,李涛,董彦强,等. 基于边缘智能的煤矿外因火灾感知方法[J]. 工矿自动化,2022,48(12):108-115. doi: 10.13272/j.issn.1671-251x.2022080046
ZHAO Duan,LI Tao,DONG Yanqiang,et al. Coal mine external fire detection method based on edge intelligence[J]. Journal of Mine Automation,2022,48(12):108-115. doi: 10.13272/j.issn.1671-251x.2022080046
|
[80] |
张美金,田宇驰,方志朋. 矿井主运输系统火灾预测的RS−SVM模型[J]. 测控技术,2018,37(9):29-32. doi: 10.19708/j.ckjs.2018.09.007
ZHANG Meijin,TIAN Yuchi,FANG Zhipeng. RS-SVM model for fire prediction of mine transportation system[J]. Measurement & Control Technology,2018,37(9):29-32. doi: 10.19708/j.ckjs.2018.09.007
|
[81] |
BARROS-DAZA M J,LUXBACHER K D,LATTIMER B Y,et al. Mine conveyor belt fire classification[J]. Journal of Fire Sciences,2022,40(1):44-69. doi: 10.1177/07349041211056343
|
[82] |
MENDHAM F,CLIFF D,HORBERRY T. Field testing and reliability assessment of video based fire detection in coal mining and coal handling environments[C]. The 16th Coal Operators' Conference,Mining Engineering,Wollongong,2016:443-450.
|
[83] |
张思齐. 基于视频图像的煤矿井下烟雾检测[D]. 西安:西安科技大学,2019.
ZHANG Siqi. Smoke detection in coal mine based on video image[D]. Xi'an:Xi'an University of Science and Technology,2019.
|
[84] |
毛浩,张建安,解云龙,等. 张家峁煤矿变电所智能巡检机器人系统设计[J]. 煤矿机械,2022,43(4):18-20. doi: 10.13436/j.mkjx.202204006
MAO Hao,ZHANG Jian'an,XIE Yunlong,et al. Design of intelligent inspection robot system for Zhangjiamao Coal Mine substation[J]. Coal Mine Machinery,2022,43(4):18-20. doi: 10.13436/j.mkjx.202204006
|
[85] |
刘春梅,李辉. 煤矿开采用掘进机人员识别系统设计与研究[J]. 内蒙古农业大学学报(自然科学版),2020,41(4):76-79.
LIU Chunmei,LI Hui. Design of the roadheaders used in the personnel identification system[J]. Journal of Inner Mongolia Agricultural University(Natural Science Edition),2020,41(4):76-79.
|
[86] |
ALPORT M,GOVINDER P,PLUM S,et al. Identification of conveyor belt splices and damages using neural networks[J]. Bulk Solids Handling,2001,21(6):622-627.
|
[87] |
方崇全,张荣华. 基于X射线图像的接头抽动算法研究[J]. 煤矿开采,2016,21(4):50-52. doi: 10.13532/j.cnki.cn11-3677/td.2016.04.013
FANG Chongquan,ZHANG Ronghua. Belt joint twitch algorithm research based on X-ray image[J]. Coal Mining Technology,2016,21(4):50-52. doi: 10.13532/j.cnki.cn11-3677/td.2016.04.013
|
[88] |
张灿. X光钢丝绳芯输送带接头伸长自动检测算法研究与实现[D]. 天津:天津工业大学,2018.
ZHANG Can. Research and implementation of automatic detection algorithm for elongation of steel cord conveyor belt joints[D]. Tianjin:Tianjin University of Technology,2018.
|
[89] |
黄元麒. 基于X光图像的钢丝绳芯输送带接头抽动检测算法研究[D]. 徐州:中国矿业大学,2019.
HUANG Yuanqi. Research on joint twitch detection algorithm of steel cord conveyor belts based on X-ray image[D]. Xuzhou:China University of Mining and Technology,2019.
|
[90] |
LI Jie,MIAO Changyun. The conveyor belt longitudinal tear on-line detection based on improved SSR algorithm[J]. Optik,2016,127(19):8002-8010. doi: 10.1016/j.ijleo.2016.05.111
|
[91] |
HAO Xiaoli,LIANG Huan. A multi-class support vector machine real-time detection system for surface damage of conveyor belts based on visual saliency[J]. Measurement,2019,146:125-132. doi: 10.1016/j.measurement.2019.06.025
|
[92] |
YANG Ruiyun,QIAO Tiezhu,PANG Yusong,et al. Infrared spectrum analysis method for detection and early warning of longitudinal tear of mine conveyor belt[J]. Measurement,2020,165:107856-107864. doi: 10.1016/j.measurement.2020.107856
|
[93] |
乔铁柱. 输送带纵向撕裂可见光与红外双目视觉在线检测系统研究[D]. 太原:太原理工大学,2015.
QIAO Tiezhu. Binocular vision on-line detection system study for conveyor belt longitudinal tear based on infrared and visible light [D]. Taiyuan:Taiyuan University of Technology,2015.
|
[94] |
YU Binchao,QIAO Tiezhu,ZHANG Haitao,et al. Dual band infrared detection method based on mid-infrared and long infrared vision for conveyor belts longitudinal tear[J]. Measurement,2018,120:140-149. doi: 10.1016/j.measurement.2018.02.029
|
[95] |
LYU Zhiwei,ZHANG Xiaoguang,HU Jiangdi,et al. Visual detection method based on line lasers for the detection of longitudinal tears in conveyor belts[J]. Measurement,2021,183. DOI: 10.1016/j.measurement.2021.109800.
|
[96] |
LI Xianguo,SHEN Lifang,MING Zixu,et al. Laser-based on-line machine vision detection for longitudinal rip of conveyor belt[J]. Optik,2018,168:360-369. doi: 10.1016/j.ijleo.2018.04.053
|
[97] |
LI Weiwei,LI Chunqing,YAN Fanlei. Research on belt tear detection algorithm based on multiple sets of laser line assistance[J]. Measurement,2021,174. DOI: 10.1016/j.measurement.2021.109047.
|
[98] |
ZHANG Mengchao,ZHANG Yuan,ZHOU Manshan,et al. Application of lightweight convolutional neural network for damage detection of conveyor belt[J]. Applied sciences,2021,11(16). DOI: 10.3390/app11167282.
|
[99] |
杨彦利,苗长云,亢伉,等. 输送带跑偏故障的机器视觉检测技术[J]. 中北大学学报(自然科学版),2012,33(6):667-671. doi: 10.3969/j.issn.1673-3193.2012.06.011
YANG Yanli,MIAO Changyun,KANG Kang,et al. Machine vision inspection technique for conveyor belt deviation[J]. Journal of North University of China(Natural Science Edition),2012,33(6):667-671. doi: 10.3969/j.issn.1673-3193.2012.06.011
|
[100] |
贾焕. 基于图像处理的输送带撕裂和跑偏检测研究[D]. 太原:太原科技大学,2019.
JIA Huan. Research on detection of conveyor belt tearing and deviation based on image processing[D]. Taiyuan:Taiyuan University of Science and Technology,2019.
|
[101] |
胡江迪. 基于视觉的矿用输送带状态监测系统研究[D]. 徐州:中国矿业大学,2021.
HU Jiangdi. Research on condition monitoring system of mine conveyor belt state on vision[D]. Xuzhou:China University of Mining and Technology,2021.
|
[102] |
SARAN G,GANGULY A,TRIPATHI V,et al. Multi-modal imaging-based foreign particle detection system on coal conveyor belt[J]. Transactions of the Indian Institute of Metals,2022,75(9):2231-2240. doi: 10.1007/s12666-021-02492-3
|
[103] |
吴守鹏. 基于机器视觉的运煤皮带异物识别方法研究[D]. 徐州:中国矿业大学,2019.
WU Shoupeng. Research on detection method of foreign object on coal conveyor belt based on computer vision[D]. Xuzhou:China University of Mining and Technology,2019.
|
[104] |
CHEN Yiming,SUN Xu,XU Liang,et al. Application of YOLOv4 algorithm for foreign object detection on a belt conveyor in a low-illumination environment[J]. Sensors,2022,22(18). DOI: 10.3390/s22186851.
|
[105] |
WANG Yuanbin,WANG Yujing,DANG Langfei. Video detection of foreign objects on the surface of belt conveyor underground coal mine based on improved SSD[J]. Journal of Ambient Intelligence and Humanized Computing,2023,14:5507-5516. doi: 10.1007/s12652-020-02495-w
|
[106] |
朱彦存. 基于深度学习的煤矿运煤皮带异物识别研究[D]. 阜新:辽宁工程技术大学,2021.
ZHU Yancun. Research on foreign objects recognition of coal transport belt based on deep learning[D]. Fuxin:Liaoning Technical University,2021.
|
[107] |
马宏伟,杨文娟,张旭辉. 基于红外热像的带式输送机监测与预警系统[J]. 激光与红外,2017,47(4):448-452. doi: 10.3969/j.issn.1001-5078.2017.04.011
MA Hongwei,YANG Wenjuan,ZHANG Xuhui. Monitoring and warning system of belt conveyor based on infrared thermography[J]. Laser & Infrared,2017,47(4):448-452. doi: 10.3969/j.issn.1001-5078.2017.04.011
|
[108] |
刘宇琦. 基于深度学习的托辊异常检测方法研究[D]. 西安:西安科技大学,2020.
LIU Yuqi. Research on abnormal detection method of idler based on deep learning[D]. Xi'an:Xi'an University of Science and Technology,2020.
|
[109] |
胡长斌. 基于视频数据的托辊异常检测研究[D]. 西安:西安科技大学,2021.
HU Changbin. Research on abnormal detection of roller based on video data[D]. Xi'an:Xi'an University of Science and Technology,2021.
|
[110] |
朱振. 带式输送机托辊运行状态在线巡检机器人关键技术研究[D]. 阜新:辽宁工程技术大学,2020.
ZHU Zhen. Research on the key technology of on-line inspection robot for the running state of belt conveyor roller[D]. Fuxin: Liaoning Technical University,2020.
|
[111] |
STACHOWIAK M,KOPERSKA W,STEFANIAK P,et al. Procedures of detecting damage to a conveyor belt with use of an inspection legged robot for deep mine infrastructure[J]. Minerals,2021,11(10). DOI: 10.3390/min11101040.
|
[112] |
SZREK J,WODECKI J,BŁAŻEJ R,et al. An inspection robot for belt conveyor maintenance in underground mine-infrared thermography for overheated idlers detection[J]. Applied Sciences,2020,10(14). DOI: 10.3390/app10144984.
|
[113] |
CARVALHO R,NASCIMENTO R,D'ANGELO T,et al. A UAV-based framework for semi-automated thermographic inspection of belt conveyors in the mining industry[J]. Sensors,2020,20(8). DOI: 10.3390/s20082243.
|
[114] |
王剑,刘备战,雷亚军,等. 曹家滩煤矿智能快速掘锚成套装备应用[J]. 陕西煤炭,2021,40(1):1-3,40.
WANG Jian,LIU Beizhan,LEI Yajun,et al. Application of complete equipment for intelligent rapid excavation and anchoring in Caojiatan Coal Mine[J]. Shaanxi Coal,2021,40(1):1-3,40.
|
[115] |
乔佳伟. 基于机器视觉的煤矿井下锚护作业钢带孔识别研究[D]. 北京:煤炭科学研究总院,2022.
QIAO Jiawei. Research on the identification of steel belt holes for underground anchoring operations in coal mines based on machine vision[D]. Beijing:China Coal Research Institute,2022.
|
[116] |
夏毅敏,马劼嵩,张亚洲,等. 基于柔度误差检测的锚杆台车机械臂定位[J]. 华南理工大学学报(自然科学版),2020,48(3):83-90. doi: 10.12141/j.issn.1000-565X.190251
XIA Yimin,MA Jiesong,ZHANG Yazhou,et al. Bolting jumbo boom positioning based on compliance error detection[J]. Journal of South China University of Technology(Natural Science Edition),2020,48(3):83-90. doi: 10.12141/j.issn.1000-565X.190251
|
[117] |
韩圳. 煤岩表面粗糙度智能图像识别技术及应用[D]. 徐州:中国矿业大学,2021.
HAN Zhen. Intelligent image recognition technology and application of coal rock surface roughness[D]. Xuzhou:China University of Mining and Technology,2021.
|
[118] |
王昱栋. 基于机器视觉的煤矿巷道锚杆支护异常检测[D]. 徐州:中国矿业大学,2021.
WANG Yudong. Anomaly detection of anchor bolt support in coal mine roadways based on machine vision[D]. Xuzhou:China University of Mining and Technology,2021.
|
[119] |
潘丽君,张强. 掘锚一体机全自动锚杆钻机的研制[J]. 中国新技术新产品,2022(15):87-90. doi: 10.13612/j.cnki.cntp.2022.15.024
PAN Lijun,ZHANG Qiang. Development of fully automatic anchor rod drilling machine for integrated excavation and anchoring machine[J]. New Technology & New Products of China,2022(15):87-90. doi: 10.13612/j.cnki.cntp.2022.15.024
|
[120] |
马宏伟,孙思雅,王川伟,等. 多机械臂多钻机协作的煤矿巷道钻锚机器人关键技术[J]. 煤炭学报,2023,48(1):497-509. doi: 10.13225/j.cnki.jccs.2022.1589
MA Hongwei,SUN Siya,WANG Chuanwei,et al. Key technology of drilling anchor robot with multi-manipulator and multi-rig cooperation in the coal mine roadway[J]. Journal of China Coal Society,2023,48(1):497-509. doi: 10.13225/j.cnki.jccs.2022.1589
|
[121] |
郭伟东. 基于激光辅助视觉技术的矿井带式输送机节能优化控制研究[D]. 徐州:中国矿业大学,2021.
GUO Weidong. Study on energy-saving optimization control of mine belt conveyor based on laser-assisted vision technology[D]. Xuzhou:China University of Mining and Technology,2021.
|
[122] |
成彦颖. 煤矿井下传送带智能输煤检测的研究[D]. 太原:太原科技大学,2021.
CHENG Yanying. Research on intelligent coal conveyor detection in underground coal mine[D]. Taiyuan:Taiyuan University of Science and Technology,2021.
|
[123] |
王雯. 煤矿辅助运输转载容器设计与识别定位技术研究[D]. 太原:太原理工大学,2022.
WANG Wen. Research on design and identification and positioning technology of coal mine auxiliary transportation reprint container[D]. Taiyuan:Taiyuan University of Technology,2022.
|
[124] |
秦伟华. 煤矿用带式输送机巡检机器人设计与研究[D]. 太原:太原理工大学,2020.
QIN Weihua. Design and research of inspection robot for belt conveyor in coal mine[D]. Taiyuan:Taiyuan University of Technology,2020.
|
[125] |
GARCIA G,ROCHA F,TORRE M,et al. ROSI:a novel robotic method for belt conveyor structures inspection[C]. International Conference on Advanced Robotics,Belo Horizonte,2019:326-331.
|
[126] |
SUN Zhiyuan,HUANG Linlin,JIA Ruiqing. Coal and gangue separating robot system based on computer vision[J]. Sensors,2021,21(4). DOI: 10.3390/s21041349.
|