Volume 49 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
WANG Yuanbin, LIU Jia, GUO Yaru, et al. Research on super-resolution reconstruction of mine images[J]. Journal of Mine Automation,2023,49(11):76-83, 120.  doi: 10.13272/j.issn.1671-251x.2023080081
Citation: WANG Yuanbin, LIU Jia, GUO Yaru, et al. Research on super-resolution reconstruction of mine images[J]. Journal of Mine Automation,2023,49(11):76-83, 120.  doi: 10.13272/j.issn.1671-251x.2023080081

Research on super-resolution reconstruction of mine images

doi: 10.13272/j.issn.1671-251x.2023080081
  • Received Date: 2023-08-23
  • Rev Recd Date: 2023-11-11
  • Available Online: 2023-11-23
  • Due to the impact of high dust and low illumination in underground environments, mine images have problems such as low resolution and blurry details. When existing image super-resolution reconstruction algorithms are applied to mine images, it is difficult to obtain image information at different scales. The network parameters are too large, which affects the reconstruction speed. The reconstructed images are prone to problems such as detail loss, blurry edge contours, and artifacts. A mine image super-resolution reconstruction algorithm based on multi-scale dense channel attention super-resolution generative adversarial network (SRGAN) is proposed. A multi-scale dense channel attention residual block is designed to replace the original residual block of SRGAN. Two parallel dense connected blocks with different convolutional kernel sizes are used to fully obtain image features. The efficient channel attention modules are integrated to enhance attention to high-frequency information. The depthwise separable convolution is used to lighten the network and suppress the increase of network parameters. The texture loss constraint network training is utilized to avoid artifacts during network deepening. Experiments are conducted on the proposed mine image super-resolution reconstruction algorithm and classic super-resolution reconstruction algorithms BICUBIC, SRCNN, SRRESNET, SRGAN on both underground and public datasets. The results show that the proposed algorithm outperformed the comparative algorithm in both subjective and objective evaluations. Compared to SRGAN, the proposed algorithm reduces network parameters by 2.54%. Compared to the average index values of the classic algorithms, the peak signal-to-noise ratio and structural similarity of the proposed algorithm increase by 0.764 dB and 0.053 58 respectively. It can better focus on the texture, contour and other details of the image, and the reconstructed image is more in line with human vision.

     

  • loading
  • [1]
    CHENG Deqiang,CHEN Liangliang,LYU Chen,et al. Light-guided and cross-fusion U-Net for anti-illumination image super-resolution[J]. IEEE Transactions on Circuits and Systems for Video Technology,2022,32(12):8436-8449. doi: 10.1109/TCSVT.2022.3194169
    [2]
    CHEN Liangliang,GUO Lin,CHENG Deqiang,et al. Structure-preserving and color-restoring up-sampling for single low-light image[J]. IEEE Transactions on Circuits and Systems for Video Technology,2022,32(4):1889-1902. doi: 10.1109/TCSVT.2021.3086598
    [3]
    JIANG Nan,WANG Luo. Quantum image scaling using nearest neighbor interpolation[J]. Quantum Information Processing,2015,14(5):1559-1571. doi: 10.1007/s11128-014-0841-8
    [4]
    LI Xin,ORCHARD M T. New edge-directed interpolation[J]. IEEE Transactions on Image Processing,2001,10(10):1521-1527. doi: 10.1109/83.951537
    [5]
    程相正,曾朝阳,陈杭,等. 基于双线性插值算法的低分辨率传感器标定方法[J]. 激光与光电子学进展,2013,50(7):72-78.

    CHENG Xiangzheng,ZENG Zhaoyang,CHEN Hang,et al. Calibration method of low-resolution sensor based on bilinear interpolation strategy[J]. Laser & Optoelectronics Progress,2013,50(7):72-78.
    [6]
    ZHU Yubin,DAI Yonghang,HAN Kaining,et al. An efficient BICUBIC interpolation implementation for real-time image processing using hybrid computing[J]. Journal of Real-Time Image Processing,2022,19(6):1211-1223. doi: 10.1007/s11554-022-01254-8
    [7]
    NASONOV A V,KRYLOV A. Fast super-resolution using weighted median filtering[C]. 20th International Conference on Pattern Recognition,Istanbul,2010:2230-2233.
    [8]
    HUANG Jin,GAO Bo,CHEN Yan,et al. Super-resolution reconstruction of multi-polarization sar images based on projections onto convex sets algorithm[C]. IEEE International Geoscience and Remote Sensing Symposium,Valencia,2018:8456-8459.
    [9]
    郭黎,廖宇,陈为龙,等. 基于最大后验概率的单视频时间超分辨率重建算法[J]. 计算机应用,2014,34(12):3580-3584.

    GUO Li,LIAO Yu,CHEN Weilong,et al. Single video temporal super-resolution reconstruction algorithm based on maximum a posterior[J]. Journal of Computer Applications,2014,34(12):3580-3584.
    [10]
    FREEMAN W T,JONES T R,PASZTOR E C. Example based super-resolution[J]. IEEE Computer Graphics and Applications,2002,22(2):56-65. doi: 10.1109/38.988747
    [11]
    GLASNER D,BAGON S,IRANI M. Super-resolution from a single image[C]. IEEE 12th International Conference on Computer Vision,Kyoto,2009:349-356.
    [12]
    梁美彦,张宇,梁建安,等. 基于稀疏编码非局部注意力对偶网络的病理图像超分辨率重建[J]. 计算机科学,2023,50(增刊1):305-312.

    LIANG Meiyan,ZHANG Yu,LIANG Jian'an,et al. Pathological image super-resolution reconstruction based on sparse coding non-local attention dual network[J]. Computer Science,2023,50(S1):305-312.
    [13]
    杨雪,李峰,鹿明,等. 混合稀疏表示模型的超分辨率重建[J]. 遥感学报,2022,26(8):1685-1697. doi: 10.11834/jrs.20219409

    YANG Xue,LI Feng,LU Ming,et al. New super-resolution reconstruction method based on mixed sparse representations[J]. National Remote Sensing Bulletin,2022,26(8):1685-1697. doi: 10.11834/jrs.20219409
    [14]
    DONG Chao,LOY C C,HE Kaiming,et al. Learning a deep convolutional network for image super- resolution[C]. 13th European Conference on Computer Vision,Zurich,2014:184-199.
    [15]
    DONG Chao,LOY C C,TANG Xiaoou,et al. Accelerating the super-resolution convolutional neural network[C]. 14th European Conference on Computer Vision,Amsterdam,2016:391-407.
    [16]
    KIM J,LEE J K,LEE K M. Accurate image super-resolution using very deep convolutional networks[C]. IEEE Conference on Computer Visio and Pattern Recognition,Las Vegas,2016:1646-1654.
    [17]
    ZHANG Yulun,LI Kunpeng,LI Kai,et al. Image super-resolution using very deep residual channel attention networks[C]. 15th European Conference on Computer Vision,Munich,2018:294-310.
    [18]
    程德强,赵佳敏,寇旗旗,等. 多尺度密集特征融合的图像超分辨率重建[J]. 光学精密工程,2022,30(20):2489-2500. doi: 10.37188/OPE.20223020.2489

    CHENG Deqiang,ZHAO Jiamin,KOU Qiqi,et al. Multi-scale dense feature fusion network for image super-resolution[J]. Optics and Precision Engineering,2022,30(20):2489-2500. doi: 10.37188/OPE.20223020.2489
    [19]
    LEDIG C,THEIS L,HUSZAR F,et al. Photo-realistic single image super-resolution using a generative adversarial network[C]. IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:105-114.
    [20]
    程德强,陈亮亮,蔡迎春,等. 边缘融合的多字典超分辨率图像重建算法[J]. 煤炭学报,2018,43(7):2084-2090.

    CHENG Deqiang,CHEN Liangliang,CAI Yingchun,et al. Image super-resolution reconstruction based on multi-dictionary and edge fusion[J]. Journal of China Coal Society,2018,43(7):2084-2090.
    [21]
    张剑英,宋玉龙,蔡迎春,等. 改进的非局部均值视频超分辨率重建算法[J]. 工矿自动化,2018,44(9):37-44.

    ZHANG Jianying,SONG Yulong,CAI Yingchun,et al. Improved super-resolution reconstruction algorithm of non-local mean video[J]. Industry and Mine Automation,2018,44(9):37-44.
    [22]
    汪海涛,于文洁,张光磊. 基于在线多字典学习的矿井图像超分辨率重建方法[J]. 工矿自动化,2020,46(9):74-78.

    WANG Haitao,YU Wenjie,ZHANG Guanglei. Super-resolution reconstruction method of mine image based on online multi-dictionary learning[J]. Industry and Mine Automation,2020,46(9):74-78.
    [23]
    程德强,陈杰,寇旗旗,等. 融合层次特征和注意力机制的轻量化矿井图像超分辨率重建方法[J]. 仪器仪表学报,2022,43(8):73-84.

    CHENG Deqiang,CHEN Jie,KOU Qiqi,et al. Lightweight super-resolution reconstruction method based on hierarchical features fusion and attention mechanism for mine image[J]. Chinese Journal of Scientific Instrument,2022,43(8):73-84.
    [24]
    WANG Qilong,WU Banggu,ZHU Pengfei,et al. ECA-Net:efficient channel attention for deep convolutional neural networks [C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:11531-11539.
    [25]
    姜玉宁,李劲华,赵俊莉. 基于生成式对抗网络的图像超分辨率重建算法[J]. 计算机工程,2021,47(3):249-255.

    JIANG Yuning,LI Jinhua,ZHAO Junli. Image super-resolution reconstruction algorithm based on generative adversarial networks[J]. Computer Engineering,2021,47(3):249-255.
    [26]
    张磊,王浩盛,雷伟强,等. 基于YOLOv5s−SDE的带式输送机煤矸目标检测[J]. 工矿自动化,2023,49(4):106-112.

    ZHANG Lei,WANG Haosheng,LEI Weiqiang,et al. Coal gangue target detection of belt conveyor based on YOLOv5s-SDE[J]. Journal of Mine Automation,2023,49(4):106-112.
    [27]
    HORÉ A,ZIOU D. Image quality metrics:PSNR vs SSIM[C]. International Conference on Pattern Recognition,Istanbul,2010:2366-2369.
    [28]
    WANG Zhou,BOVIK A C,SHEIKH H R,et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing,2004,13(4):600-612. doi: 10.1109/TIP.2003.819861
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (224) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return