Citation: | YANG Zhifang. Bimodal environment perception technology for underground coal mine based on radar and visual fusion[J]. Journal of Mine Automation,2023,49(11):67-75. doi: 10.13272/j.issn.1671-251x.2023080073 |
[1] |
胡青松,孟春蕾,李世银,等. 矿井无人驾驶环境感知技术研究现状及展望[J]. 工矿自动化,2023,49(6):128-140.
HU Qingsong,MENG Chunlei,LI Shiyin,et al. Research status and prospects of perception technology for unmanned mining vehicle driving environment[J]. Journal of Mine Automation,2023,49(6):128-140.
|
[2] |
XING Zhizhong,ZHAO Shuanfeng,GUO Wei,et al. Identifying balls feature in a large-scale laser point cloud of a coal mining environment by a multiscale dynamic graph convolution neural network[J]. ACS Omega,2022,7(6):4892-4907. doi: 10.1021/acsomega.1c05473
|
[3] |
王国法,赵国瑞,任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报,2019,44(1):34-41.
WANG Guofa,ZHAO Guorui,REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society,2019,44(1):34-41.
|
[4] |
鲍久圣,章全利,葛世荣,等. 煤矿井下无人化辅助运输系统关键基础研究及应用实践[J]. 煤炭学报,2023,48(2):1085-1098. doi: 10.13225/j.cnki.jccs.2022.1600
BAO Jiusheng,ZHANG Quanli,GE Shirong,et al. Basic research and application practice of unmanned auxiliary transportation system in coal mine[J]. Journal of China Coal Society,2023,48(2):1085-1098. doi: 10.13225/j.cnki.jccs.2022.1600
|
[5] |
LI Xiaohu,WAN Shaoke,LIU Shijie,et al. Bearing fault diagnosis method based on attention mechanism and multilayer fusion network[J]. ISA Transactions,2022,128:550-564. doi: 10.1016/j.isatra.2021.11.020
|
[6] |
ZHANG Di. Interoperability technology of sports health monitoring equipment based on multi-sensor information fusion[J]. Eurasip Journal on Advances in Signal Processing,2021,2021(1):1-18. doi: 10.1186/s13634-020-00710-6
|
[7] |
蔡峰,孔令华,程志恒. 大型煤炭企业煤矿智能化建设进展、问题和对策研究[J]. 中国煤炭,2023,49(6):14-18. doi: 10.3969/j.issn.1006-530X.2023.06.003
CAI Feng,KONG Linghua,CHENG Zhiheng. Research on the progress,problems,and countermeasures of intelligent construction in large coal enterprises' coal mines[J]. China Coal,2023,49(6):14-18. doi: 10.3969/j.issn.1006-530X.2023.06.003
|
[8] |
张鹏鹏,俞阿龙,孙诗裕,等. 多传感器数据融合在矿井安全监测中的应用[J]. 工矿自动化,2015,41(12):5-8.
ZHANG Pengpeng,YU Along,SUN Shiyu,et al. Application of multi-sensor data fusion in mine safety monitoring[J]. Industry and Mine Automation,2015,41(12):5-8.
|
[9] |
张静. 基于多传感器融合的露天矿山障碍物检测方法研究[D]. 长沙:湖南大学,2022.
ZHANG Jing. The obstacle detection method based on multi-sensor fusion in open-pit mines[D]. Changsha:Hunan University,2022.
|
[10] |
胡荣华,安冬,史梦圆,等. 智能矿用机器人研究现状及发展趋势[J]. 黄金,2023,44(9):59-68. doi: 10.11792/hj20230910
HU Ronghua,AN Dong,SHI Mengyuan,et al. Research situation and development tendency of intelligent mining robots[J]. Gold,2023,44(9):59-68. doi: 10.11792/hj20230910
|
[11] |
杨静宜,赵莉娅,梁月肖. 基于机器视觉的矿用巡检机器人环境感知研究[J]. 煤炭技术,2023,42(9):227-229. doi: 10.13301/j.cnki.ct.2023.09.047
YANG Jingyi,ZHAO Liya,LIANG Yuexiao. Study on mine patrol robot environment perception based on machine vision[J]. Coal Technology,2023,42(9):227-229. doi: 10.13301/j.cnki.ct.2023.09.047
|
[12] |
党相卫,秦斐,卜祥玺,等. 一种面向智能驾驶的毫米波雷达与激光雷达融合的鲁棒感知算法[J]. 雷达学报,2021,10(4):622-631. doi: 10.12000/JR21036
DANG Xiangwei,QIN Fei,BU Xiangxi,et al. A Robust perception algorithm based on a radar and LiDAR for intelligent driving[J]. Journal of Radars,2021,10(4):622-631. doi: 10.12000/JR21036
|
[13] |
江良玉. 基于激光雷达与毫米波雷达的矿区路侧感知算法[J]. 控制与信息技术,2022(5):75-79.
JIANG Liangyu. Roadside perception system based on LiDAR and millimeter-wave radar fusion in mining area[J]. Control and Information Technology,2022(5):75-79.
|
[14] |
张海波. 基于视觉与激光雷达融合的煤岩识别技术研究[D]. 徐州:中国矿业大学,2022.
ZHANG Haibo. Research on coal-rock recognition technology based on fusion of vision and lidar[D]. Xuzhou:China University of Mining and Technology,2022.
|
[15] |
袁晓明,郝明锐. 煤矿辅助运输机器人关键技术研究[J]. 工矿自动化,2020,46(8):8-14.
YUAN Xiaoming,HAO Mingrui. Research on key technologies of coal mine auxiliary transportation robot[J]. Industry and Mine Automation,2020,46(8):8-14.
|
[16] |
杨春雨,张鑫. 煤矿机器人环境感知与路径规划关键技术[J]. 煤炭学报,2022,47(7):2844-2872.
YANG Chunyu,ZHANG Xin. Key technologies of coal mine robots for environment perception and path planning[J]. Journal of China Coal Society,2022,47(7):2844-2872.
|
[17] |
陈少杰,朱振才,张永合,等. 基于3D特征点的激光雷达与立体视觉配准方法[J]. 激光与光电子学进展,2020,57(3):58-65.
CHEN Shaojie,ZHU Zhencai,ZHANG Yonghe,et al. Extrinsic calibration for lidar and stereo vision using 3D feature points[J]. Laser & Optoelectronics Progress,2020,57(3):58-65.
|
[18] |
张赛赛,于红绯. 基于多维动态卷积的激光雷达与相机外参标定方法[J/OL]. 激光与光电子学进展:1-12[2023-08-03]. http://kns.cnki.net/kcms/detail/31.1690.TN.20230920.1803.070.html.
ZHANG Saisai,YU Hongfei. LiDAR and camera external parameter calibration method based on multi-dimensional dynamic convolution[J/OL]. Laser & Optoelectronics Progress:1-12[2023-08-03]. http://kns.cnki.net/kcms/detail/31.1690.TN.20230920.1803.070.html.
|
[19] |
PHILION J,FIDLER S. Lift,splat,shoot:encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[C]. Computer Vision-ECCV,Glasgow,2020:194-210.
|
[20] |
LI Zhiqi,WANG Wenhai,LI Hongyang,et al. Bevformer:learning bird's-eye-view representation from multi-camera images via spatiotemporal transformers[C]. European Conference on Computer Vision,Tel Aviv,2022:1-18.
|
[21] |
许志,李敬兆,张传江,等. 轻量化CNN及其在煤矿智能视频监控中的应用[J]. 工矿自动化,2020,46(12):13-19.
XU Zhi,LI Jingzhao,ZHANG Chuanjiang,et al. Lightweight CNN and its application in coal mine intelligent video surveillance[J]. Industry and Mine Automation,2020,46(12):13-19.
|
[22] |
魏东,王忠宾,司垒,等. 采煤机作业区域人员精确检测方法研究[J]. 工矿自动化,2022,48(2):19-28.
WEI Dong,WANG Zhongbin,SI Lei,et al. Research on precise detection method of personnel in shearer operation area[J]. Industry and Mine Automation,2022,48(2):19-28.
|
[23] |
饶中钰,吴景涛,李明. 煤矸石图像分类方法[J]. 工矿自动化,2020,46(3):69-73.
RAO Zhongyu,WU Jingtao,LI Ming. Coal-gangue image classification method[J]. Industry and Mine Automation,2020,46(3):69-73.
|
[24] |
杜青,杨仕教,郭钦鹏,等. 地下矿山作业人员佩戴安全帽智能检测方法[J]. 工矿自动化,2023,49(7):134-140.
DU Qing,YANG Shijiao,GUO Qinpeng,et al. Intelligent detection method of working personnel wearing safety helmets in underground mine[J]. Journal of Mine Automation,2023,49(7):134-140.
|
[25] |
余乐文. 地下矿山非结构环境地图创建与自主探索方法研究[D]. 北京:北京科技大学,2022.
YU Lewen. Research on methods of mapping and autonomous exploration in underground mine unstructured environment[D]. Beijing:University of Science and Technology Beijing,2022.
|
[26] |
RONNEBERGER O,FISCHER P,BROX T. U-net:convolutional networks for biomedical image segmentation[C]. International Conference on Medical Image Computing and Computer Assisted Intervention,Munich,2015:234-241.
|
[27] |
沈科,季亮,张袁浩,等. 基于改进YOLOv5s模型的煤矸目标检测[J]. 工矿自动化,2021,47(11):107-111,118.
SHEN Ke,JI Liang,ZHANG Yuanhao,et al. Research on coal and gangue detection algorithm based on improved YOLOv5s model[J]. Industry and Mine Automation,2021,47(11):107-111.
|
[28] |
张旭辉,闫建星,张超,等. 基于改进YOLOv5s+DeepSORT的煤块行为异常识别[J]. 工矿自动化,2022,48(6):77-86,117.
ZHANG Xuhui,YAN Jianxing,ZHANG Chao,et al. Coal block abnormal behavior identification based on improved YOLOv5s + DeepSORT[J]. Journal of Mine Automation,2022,48(6):77-86,117.
|
[29] |
WANG C Y,LIAO H Y M,WU Y H,et al. CSPNet:a new backbone that can enhance learning capability of CNN[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,Seattle,2020:390-391.
|