Citation: | ZHOU Libing, CHEN Xiaojing, JIA Wenqi, et al. Visible and infrared image fusion algorithm for underground personnel detection[J]. Journal of Mine Automation,2023,49(9):73-83. DOI: 10.13272/j.issn.1671-251x.2023070025 |
[1] |
周李兵. 煤矿井下无轨胶轮车无人驾驶系统研究[J]. 工矿自动化,2022,48(6):36-48.
ZHOU Libing. Research on unmanned driving system of underground trackless rubber-tyred vehicle in coal mine[J]. Journal of Mine Automation,2022,48(6):36-48.
|
[2] |
MA Jiayi,MA Yong,LI Chang. Infrared and visible image fusion methods and applications:a survey[J]. Information Fusion,2019,45:153-178. DOI: 10.1016/j.inffus.2018.02.004
|
[3] |
WANG Zhishe,XU Jiawei,JIANG Xiaolin,et al. Infrared and visible image fusion via hybrid decomposition of NSCT and morphological sequential toggle operator[J]. Optik,2020,201. DOI: 10.1016/j.ijleo.2019.163497.
|
[4] |
MALLAT S G. A theory for multiresolution signal decomposition:the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7):674-693. DOI: 10.1109/34.192463
|
[5] |
肖杨,张凌雪,付玲. Contourlet变换及方向滤波器组设计相关问题[J]. 科技风,2009(23):221. DOI: 10.3969/j.issn.1671-7341.2009.23.199
XIAO Yang,ZHANG Lingxue,FU Ling. Problems related to Contourlet transformation and directional filter bank design[J]. Technology Wind,2009(23):221. DOI: 10.3969/j.issn.1671-7341.2009.23.199
|
[6] |
DA CUNHA A L,ZHOU Jianping,DO M N. The nonsubsampled contourlet transform:theory,design,and applications[J]. IEEE Transactions on Image Processing,2006,15(10):3089-3101. DOI: 10.1109/TIP.2006.877507
|
[7] |
罗娟,王立平. 基于非下采样Contourlet变换耦合特征选择机制的可见光与红外图像融合算法[J]. 电子测量与仪器学报,2021,35(7):163-169.
LUO Juan,WANG Liping. Infrared and visible image fusion algorithm based on nonsubsampled contourlet transform coupled with feature selection mechanism[J]. Journal of Electronic Measurement and Instrumentation,2021,35(7):163-169.
|
[8] |
GAO Ce,QI Donghao,ZHANG Yanchao,et al. Infrared and visible image fusion method based on ResNet in a nonsubsampled contourlet transform domain[J]. IEEE Access,2021,9:91883-91895. DOI: 10.1109/ACCESS.2021.3086096
|
[9] |
詹玲超,刘瑾. 基于非下采样Contourlet变换红外和可见光图像的融合方法[J]. 数字技术与应用,2016(10):45-46.
ZHAN Lingchao,LIU Jin. Infrared and visible image fusion method based on nonsubsampled contourlet transform[J]. Digital Technology and Application,2016(10):45-46.
|
[10] |
FARBMAN Z,FATTAL R,LISCHINSKI D,et al. Edge-preserving decompositions for multi-scale tone and detail manipulation[J]. ACM Transactions on Graphics,2008,27(3):1-10.
|
[11] |
ZHANG Yu,LIU Yu,SUN Peng,et al. IFCNN:a general image fusion framework based on convolutional neural network[J]. Information Fusion,2020,54:99-118. DOI: 10.1016/j.inffus.2019.07.011
|
[12] |
LI Hui,WU Xiaojun,KITTLER J. RFN-Nest:an end-to-end residual fusion network for infrared and visible images[J]. Information Fusion,2021,73:72-86. DOI: 10.1016/j.inffus.2021.02.023
|
[13] |
WANG Zhishe,WANG Junyao,WU Yuanyuan,et al. UNFusion:a unified multi-scale densely connected network for infrared and visible image fusion[J]. IEEE Transactions on Circuits and Systems for Video Technology,2022,32(6):3360-3374. DOI: 10.1109/TCSVT.2021.3109895
|
[14] |
LIU Yu,CHEN Xun,CHENG Juan,et al. Infrared and visible image fusion with convolutional neural networks[J]. International Journal of Wavelets,Multiresolution and Information Processing,2018,16(3). DOI: 10.1142/S0219691318500182.
|
[15] |
LI Hui,WU Xiaojun. DenseFuse:a fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing,2018,28(5):2614-2623.
|
[16] |
罗迪,王从庆,周勇军. 一种基于生成对抗网络与注意力机制的可见光和红外图像融合方法[J]. 红外技术,2021,43(6):566-574.
LUO Di,WANG Congqing,ZHOU Yongjun. A visible and infrared image fusion method based on generative adversarial networks and attention mechanism[J]. Infrared Technology,2021,43(6):566-574.
|
[17] |
王志社,邵文禹,杨风暴,等. 红外与可见光图像交互注意力生成对抗融合方法[J]. 光子学报,2022,51(4):318-328.
WANG Zhishe,SHAO Wenyu,YANG Fengbao,et al. Infrared and visible image fusion method via interactive attention based generative adversarial network[J]. Acta Photonica Sinica,2022,51(4):318-328.
|
[18] |
MA Jiayi,ZHANG Hao,SHAO Zhenfeng,et al. GANMcC:a generative adversarial network with multiclassification constraints for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement,2021,70:1-14.
|
[19] |
RAO Dongyu,WU Xiaojun,XU Tianyang. TGFuse:an infrared and visible image fusion approach based on transformer and generative adversarial network[EB/OL]. [2023-06-20]. https://arxiv.org/abs/2201.10147.
|
[20] |
LI Jing,ZHU Jianming,LI Chang,et al. CGTF:convolution-guided transformer for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement,2022,71:1-14.
|
[21] |
JIANG Yifan,GONG Xinyu,LIU Ding,et al. EnlightenGAN:deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing,2021,30:2340-2349. DOI: 10.1109/TIP.2021.3051462
|
[22] |
秦沛霖,张传伟,周李兵,等. 煤矿井下无人驾驶无轨胶轮车目标3D检测研究[J]. 工矿自动化,2022,48(2):35-41.
QIN Peilin,ZHANG Chuanwei,ZHOU Libing,et al. Research on 3D target detection of unmanned trackless rubber-tyred vehicle in coal mine[J]. Industry and Mine Automation,2022,48(2):35-41.
|
[23] |
WOO S,PARK J,LEE J-Y,et al. CBAM:convolutional block attention module[C]. 15th European Conference on Computer Vision,Munich,2018:3-19.
|
[24] |
梁美彦,张倩楠,任竹云,等. 基于注意力机制的结肠癌病理学图像识别研究[J]. 测试技术学报,2022,36(2):93-100.
LIANG Meiyan,ZHANG Qiannan,REN Zhuyun,et al. Research on identification of colon pathology image based on attention mechanism[J]. Journal of Test and Measurement Technology,2022,36(2):93-100.
|
[25] |
牛悦,王安南,吴胜昔. 基于注意力机制和级联金字塔网络的姿态估计[J/OL]. 华东理工大学学报(自然科学版):1-11[2023-06-20]. DOI: 10.14135/j.cnki.1006-3080.20220715003.
NIU Yue,WANG Annan,WU Shengxi. Pose estimation based on attention module and CPN[J/OL]. Journal of East China University of Science and Technology(Natural Science Edition):1-11[2023-06-20]. DOI: 10.14135/j.cnki.1006-3080.20220715003.
|
[26] |
ZAGORUYKO S,KOMODAKIS N. Paying more attention to attention:improving the performance of convolutional neural networks via attention transfer[EB/OL]. [2023-06-20]. https://arxiv.org/abs/1612.03928v2.
|
[27] |
陈舞,孙军梅,李秀梅. 融合多尺度残差和注意力机制的特发性肺纤维化进展预测[J]. 中国图象图形学报,2022,27(3):812-826.
CHEN Wu,SUN Junmei,LI Xiumei. Multi-scale residual and attention mechanism fusion based prediction for the progression of idiopathic pulmonary fibrosis[J]. Journal of Image and Graphics,2022,27(3):812-826.
|
[28] |
李国梁,向文豪,张顺利,等. 基于残差网络和注意力机制的红外与可见光图像融合算法[J]. 无人系统技术,2022,5(2):9-21.
LI Guoliang,XIANG Wenhao,ZHANG Shunli,et al. Infrared and visible image fusion algorithm based on residual network and attention mechanism[J]. Unmanned Systems Technology,2022,5(2):9-21.
|
[29] |
XU Han,MA Jiayi,JIANG Junjun,et al. U2Fusion:a unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,44(1):502-518.
|
[30] |
LIN T-Y,MAIRE M,BELONGIE S,et al. Microsoft COCO:common objects incontext[C]. 13th European Conference on Computer Vision,Zurich,2014:740-755.
|
[31] |
ROBERTS J W,VAN AARDT J A,AHMED F B. Assessment of image fusion procedures using entropy,image quality,and multispectral classification[J]. Journal of Applied Remote Sensing,2008,2(1). DOI: 10.1117/1.2945910.
|
[32] |
XYDEAS C,PETROVIC V. Objective image fusion performance measure[J]. Electronics Letters,2000,36(4):308-309. DOI: 10.1049/el:20000267
|
[33] |
HAN Yu,CAI Yunze,CAO Yin,et al. A new image fusion performance metric based on visual information fidelity[J]. Information Fusion,2013,14(2):127-135. DOI: 10.1016/j.inffus.2011.08.002
|
[34] |
吴明辉. 联合特征提取方法的图像融合技术研究[D]. 武汉:武汉大学,2021.
WU Minghui. Research on image fusion based on joint feature extraction[D]. Wuhan:Wuhan University,2021.
|
[35] |
XU Han. RoadScene:a new dataset of aligned infrared and visible images[DB/OL]. [2023-06-07]. https://github.com/hanna-xu/RoadScene.
|
[36] |
TOET A. TNO image fusion datase[DB/OL]. [2023-06-26]. https://figshare.com/articles/dataset/TNO_Image_Fusion_Dataset/1008029.
|
[37] |
DU Jiao,LI Weisheng,XIAO Bin. Anatomical-functional image fusion by information of interest in local Laplacian filtering domain[J]. IEEE Transactions on Image Processing,2017,26(12):5855-5866. DOI: 10.1109/TIP.2017.2745202
|
[38] |
LIU Zhe,SONG Yuqing,SHENG V S,et al. MRI and PET image fusion using the nonparametric density model and the theory of variable-weight[J]. Computer Methods and Programs in Biomedicine,2019,175:73-82. DOI: 10.1016/j.cmpb.2019.04.010
|
[39] |
YIN Ming,LIU Xiaoning,LIU Yu,et al. Medical image fusion with parameter-adaptive pulse coupled neural network in nonsubsampled shearlet transform domain[J]. IEEE Transactions on Instrumentation and Measurement,2018,68(1):49-64.
|
[40] |
KANG Jiayin,LU Wu,ZHANG Wenjuan. Fusion of brain PET and MRI images using tissue-aware conditional generative adversarial network with joint loss[J]. IEEE Access,2020,8:6368-6378. DOI: 10.1109/ACCESS.2019.2963741
|