FU Yan, LIU Zhihao, YE Ou. A method for constructing a knowledge graph of unsafe behaviors in coal mines[J]. Journal of Mine Automation,2024,50(1):88-95. DOI: 10.13272/j.issn.1671-251x.2023060014
Citation: FU Yan, LIU Zhihao, YE Ou. A method for constructing a knowledge graph of unsafe behaviors in coal mines[J]. Journal of Mine Automation,2024,50(1):88-95. DOI: 10.13272/j.issn.1671-251x.2023060014

A method for constructing a knowledge graph of unsafe behaviors in coal mines

More Information
  • Received Date: June 05, 2023
  • Revised Date: January 07, 2024
  • Available Online: January 30, 2024
  • Although knowledge graphs have been widely applied in various fields, there is relatively little research on coal mine safety, especially in the area of unsafe behavior underground. A bottom-up knowledge graph of unsafe behaviors in coal mines has been constructed. Firstly, a combination of traditional machine learning and deep learning algorithms is used for named entity recognition. RoBERTa is used for word vectorization. The bidirectional long short term memory network (BiLSTM) is used to annotate the vectors, improving the network model's capability to capture contextual features. To solve the problem of insufficient data volume in the dataset of unsafe behaviors in coal mines, a multi-layer perceptron (MLP) is used. The conditional random field (CRF) model is adopted to solve the problem of unrecognized word relationships and capture full-text information and prediction results. Secondly, based on the structural characteristics of the statements, a dependency syntax tree structure based on the knowledge "entity - relationship - entity" triplet is designed to extract and represent knowledge resources in the field of unsafe behavior underground. Finally, a knowledge graph of unsafe behaviors underground is constructed. The experimental results show that the RoBERTa-BiLSTM-MLP-CRF model has good recognition performance for four types of entity categories: results, violating behavior, erroneous behavior, and careless behavior, with accuracy rates of 86.7%, 80.3%, 80.7%, and 77.4%, respectively. ② Under the same dataset, the accuracy, recall, and F1 value of the RoBERTa-BiLSTM-MLP-CRF model training are improved by 1.6%, 1.5%, and 1.6%, respectively, compared to the RoBERTa-BiLSTM-CRF model.
  • [1]
    黄辉,张雪. 煤矿员工不安全行为研究综述[J]. 煤炭工程,2018,50(6):123-127.

    HUANG Hui,ZHANG Xue. Review of research on unsafe behavior of miners[J]. Coal Engineering,2018,50(6):123-127.
    [2]
    GUARINO N,WELTY C. Evaluating ontological decisions with OntoClean[J]. Communications of the ACM,2002,45(2):61-65. DOI: 10.1145/503124.503150
    [3]
    HORROCKS,IAN,PATEL-SCHNEIDER,et al. SWRL:a semantic web rule language combining OWL and RuleML[J]. W3C Member Submission,2004,21(79):1-31.
    [4]
    BORDES A,USUNIER N,GARCIA-DURAN A,et al. Translating embeddings for modeling multi-relational data[C]. Neural Information Processing Systems,South Lake Tahoe,2013:1-9.
    [5]
    WANG Zhen,ZHANG Jianwen,FENG Jianlin,et al. Knowledge graph embedding by translating on hyperplanes[C]. The 28th AAAI Conference on Artificial Intelligence,2014.
    [6]
    刘文聪,张春菊,汪陈,等. 基于BiLSTM−CRF的中文地质时间信息抽取[J]. 地球科学进展,2021,36(2):211-220.

    LIU Wencong,ZHANG Chunju,WANG Chen,et al. Geological time information extraction from Chinese text based on BiLSTM-CRF[J]. Advances in Earth Science,2021,36(2):211-220.
    [7]
    吴闯,张亮,唐希浪,等. 航空发动机润滑系统故障知识图谱构建及应用[J/OL]. 北京航空航天大学学报:1-14[2023-05-22]. https://doi.org/10.13700/j.bh.1001-5965.2022.0434.

    WU Chuang,ZHANG Liang,TANG Xilang,et al. Construction and application of fault knowledge graph for aero-engine lubrication system[J/OL]. Journal of Beijing University of Aeronautics and Astronautics:1-14[2023-05-22]. https://doi.org/10.13700/j.bh.1001-5965.2022.0434.
    [8]
    SHAO Zhou,YUAN Sha,WANG Yongli,et al. ELAD:an entity linking based affiliation disambiguation framework[J]. IEEE Access,2020,8:70519-70526. DOI: 10.1109/ACCESS.2020.2986826
    [9]
    FANG Yuan,CHANG Mingwei. Entity linking on microblogs with spatial and temporal signals[J]. Transactions of the Association for Computational Linguistics,2014,2:259-272. DOI: 10.1162/tacl_a_00181
    [10]
    SIMONE F,ANSALDI S,AAGNELLO P,et al. Industrial safety management in the digital era:constructing a knowledge graph from near misses[J]. Computers in Industry,2023,146. DOI: 10.1016/j.compind.2022.103849.
    [11]
    尉桢楷,程梦,周夏冰,等. 基于类卷积交互式注意力机制的属性抽取研究[J]. 计算机研究与发展,2020,57(11):2456-2466.

    WEI Zhenkai,CHENG Meng,ZHOU Xiabing,et al. Convolutional interactive attention mechanism for aspect extraction[J]. Journal of Computer Research and Development,2020,57(11):2456-2466.
    [12]
    刘峤,李杨,段宏,等. 知识图谱构建技术综述[J]. 计算机研究与发展,2016,53(3):582-600.

    LIU Qiao,LI Yang,DUAN Hong,et al. Knowledge graph construction techniques[J]. Journal of Computer Research and Development,2016,53(3):582-600.
    [13]
    HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997,9(8):1735-1780. DOI: 10.1162/neco.1997.9.8.1735
    [14]
    SEKI K. On cross-lingual text similarity using neural translation models[J]. Journal of Information Science,2020,27:315-321.
    [15]
    李红霞,樊欣怡. 人因视角下国内煤矿安全领域研究现状与发展趋势[J]. 煤炭工程,2022,54(1):181-186.

    LI Hongxia,FAN Xinyi. Status and development trend of coal mine safety research from the perspective of human factors[J]. Coal Engineering,2022,54(1):181-186.
    [16]
    BENGIO Y,DUCHARME RVINCENT P. A neural probabilistic language model[J]. Journal of Machine Learning Research,2003,3:1137-1155.
    [17]
    PENNINGTON J,SOCHER R,MANNING C. Glove:global vectors for word representation[C]. Conference on Empirical Methods in Natural Language Processing,Doha,2014:1532-1543.
    [18]
    PETERS M E,NEUMANN M,LYYER M,et al. Deep contextualized word representations[C]. Conference of the North American Chapter of the Association for Computational Linguistics,New Orleans,2018:2227-2237.
    [19]
    DEVLIN J,CHANG Mingwei,LEE K,et al. BERT:pre-training of deep bidirectional transformers for language understanding[C]. Conference of the North American Chapter of the Association for Computational Lingristics,Jill Burstein,2019:4171-4186.
    [20]
    XU Wencong,HU Yue,LI Jianxun. A data-driven Dir-MUSIC method based on the MLP model[J]. IET Science,Measurement & Technology,2022(6):367-376.
    [21]
    王智广,文红英,鲁强,等. 地质领域开放式实体关系联合抽取[J]. 计算机工程与设计,2021,42(4):996-1005.

    WANG Zhiguang,WEN Hongying,LU Qiang,et al. Joint extraction of open entity relation in geological field[J]. Computer Engineering and Design,2021,42(4):996-1005.
    [22]
    赵晓娟,贾焰,李爱平,等. 多源知识融合技术研究综述[J]. 云南大学学报(自然科学版),2020,42(3):459-473.

    ZHAO Xiaojuan,JIA Yan,LI Aiping,et al. A survey of the research on multi-source knowledge fusion technology[J]. Journal of Yunnan University(Natural Sciences Edition),2020,42(3):459-473.
    [23]
    乔骥,王新迎,闵睿,等. 面向电网调度故障处理的知识图谱框架与关键技术初探[J]. 中国电机工程学报,2020,40(18):5837-5849.

    QIAO Ji,WANG Xinying,MIN Rui,et al. Framework and key technologies of knowledge-graph-based fault handling system in power grid[J]. Proceedings of the CSEE,2020,40(18):5837-5849.
    [24]
    曹现刚,张梦园,雷卓,等. 煤矿装备维护知识图谱构建及应用[J]. 工矿自动化,2021,47(3):41-45.

    CAO Xiangang,ZHANG Mengyuan,LEI Zhuo,et al. Construction and application of knowledge graph for coal mine equipment maintenance[J]. Industry and Mine Automation,2021,47(3):41-45.
  • Related Articles

    [1]CHU Yangjing, ZHANG Heng, TANG Ling, HOU Xiaodong. Research on the construction method of temporal knowledge graph for open-pit coal mine slope safety[J]. Journal of Mine Automation, 2025, 51(2): 84-90, 130. DOI: 10.13272/j.issn.1671-251x.2024110046
    [2]ZHANG Pengyang, SHENG Long, WANG Wei, WEI Zhongcheng, ZHAO Jijun. Construction of a mine accident knowledge graph based on Large Language Models[J]. Journal of Mine Automation, 2025, 51(2): 76-83, 105. DOI: 10.13272/j.issn.1671-251x.2024080031
    [3]LUO Xiangyu, DU Hao, HUA Ying, XIE Panshi, LYU Wenyu. A method for constructing a knowledge graph of coal mine roof disaster prevention and control[J]. Journal of Mine Automation, 2024, 50(6): 54-60. DOI: 10.13272/j.issn.1671-251x.2023120032
    [4]CAI Anjiang, ZHANG Yan, REN Zhigang. Fault knowledge graph construction for coal mine fully mechanized mining equipment[J]. Journal of Mine Automation, 2023, 49(5): 46-51. DOI: 10.13272/j.issn.1671-251x.2023020005
    [5]LI Zhe, ZHOU Bin, LI Wenhui, LI Xiaoyun, ZHOU You, FENG Zhanke, ZHAO Han. Construction and application of mine electromechanical equipment accident knowledge graph[J]. Journal of Mine Automation, 2022, 48(1): 109-112. DOI: 10.13272/j.issn.1671-251x.2021100009
    [6]WANG Yan, CAO Xiangang, ZHANG Xuhui, FAN Hongwei, DUAN Yong, HUO Xiaoquan. Construction of intelligent maintenance knowledge base for shearer based on knowledge graph[J]. Journal of Mine Automation, 2021, 47(7): 29-36.. DOI: 10.13272/j.issn.1671-251x.17786
    [7]CAO Xiangang, ZHANG Mengyuan, LEI Zhuo, DUAN Xinyu, CHEN Ruihao. Construction and application of knowledge graph for coal mine equipment maintenance[J]. Journal of Mine Automation, 2021, 47(3): 41-45. DOI: 10.13272/j.issn.1671-251x.2020090013
    [8]SUN Jiping, LIU Jianqiao. Coal and rock recognition method based on low frequency component characteristics of discrete cosine transform and learning vector quantizatio[J]. Journal of Mine Automation, 2015, 41(11): 1-6. DOI: 10.13272/j.issn.1671-251x.2015.11.001
    [9]WANG Yong, CHENG Can, DAI Ming-jun, SUN Yong. An Optimized Method for Semi-supervised Support Vector Machines[J]. Journal of Mine Automation, 2010, 36(12): 47-50.
    [10]WANG Pei-qiang, ZHANG Lan-tao, ZHU Yan-ya. Research of Database of Mining Graphic Element of Coal Mine Based on Word Platform[J]. Journal of Mine Automation, 2009, 35(9): 85-87.
  • Cited by

    Periodical cited type(10)

    1. 尹波,彭雷祥,王正超,张磊,尹宜辰. 基于精细地质建模的开采沉陷预计算法优化与应用研究. 煤炭工程. 2025(01): 23-28 .
    2. 王忠宾,李福涛,司垒,魏东,戴嘉良,张森. 采煤机自适应截割技术研究进展及发展趋势. 煤炭科学技术. 2025(01): 296-311 .
    3. 韩晓刚,王江梅,朱万成,李荟,徐晓冬,秦涛,景树柱,韩国平. 多源数据融合的双阳煤矿精细化建模及虚拟现实平台搭建. 矿业研究与开发. 2024(03): 178-184 .
    4. 于建军,王建成,刘百祥. 基于地质物探数据的工作面透明地质模型构建研究与应用. 山东煤炭科技. 2024(04): 157-161+167+173 .
    5. 赵亦辉,周转会,杨青,孙永锋,吴振. 采煤机单刀截割曲线最优生成算法研究. 煤炭技术. 2024(06): 224-227 .
    6. 王海军,郑三龙,王相业,董敏涛,吴艳,马良,杨伟,朱玉英. 地质构造隐蔽致灾因素透明化勘查技术——以新疆屯宝煤矿为例. 煤炭科学技术. 2024(09): 173-188 .
    7. 李蔚林,赵嘉良,阮柳谭,李泽荃. 基于空间自回归插值方法的煤层厚度预测研究. 煤炭工程. 2024(S1): 112-119 .
    8. 贾建称,贾茜,桑向阳,吴艳. 我国煤矿地质保障系统建设30年:回顾与展望. 煤田地质与勘探. 2023(01): 86-106 .
    9. 李森,李重重,刘清. 基于透明地质的综采工作面规划截割协同控制系统. 煤炭科学技术. 2023(04): 175-184 .
    10. 刘亚,王静宜. 煤层智能化开采设备状态远程监测系统设计. 自动化与仪器仪表. 2023(05): 332-336 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (843) PDF downloads (136) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return