QU Shijia, YANG Huan. Research on mechanical response of artificial dam under gas explosion in roadway[J]. Journal of Mine Automation,2023,49(9):132-139. DOI: 10.13272/j.issn.1671-251x.2023040078
Citation: QU Shijia, YANG Huan. Research on mechanical response of artificial dam under gas explosion in roadway[J]. Journal of Mine Automation,2023,49(9):132-139. DOI: 10.13272/j.issn.1671-251x.2023040078

Research on mechanical response of artificial dam under gas explosion in roadway

More Information
  • Received Date: April 24, 2023
  • Revised Date: September 14, 2023
  • Available Online: September 26, 2023
  • When a gas explosion occurs in a mine, the explosion shock wave can damage the water storage dam, leading to a large amount of water gushing out of the goaf, and even causing gas water coupling disasters. Therefore, the stability of artificial dams under extreme conditions is of great significance for mine safety. Currently, there's a lack of research on the mechanical response features of underground artificial dams propagating with gas explosion shock waves. In order to solve the above problems, the LS-DYNA software is used to simulate the impact of gas explosion in roadways on the mechanical properties of artificial dams. The stress state, deformation, and stress features of the explosion facing side, loess interlayer, and explosion backing side are studied. The dynamic response process of artificial dams under the action of gas explosion shock waves in roadways is analyzed. The analysis results of the load distribution on the surface of the artificial dam indicate that when an explosion occurs inside the roadway, the explosion load on the explosion facing surface of the artificial dam is unevenly distributed. At the same time, in the intersection area of various underground structures, the reflected overpressure has a significant strengthening effect due to the convergence and superposition of reflected shock waves. With the rapid release of explosive energy, the impulse loading time history curve of the central measuring point on the explosion facing surface exhibits a three-stage change feature. When the gas volume is 200 m3, the maximum impulse of the central measuring point on the explosion facing surface can reach 0.04 MPa·s within 500 ms of explosion. The results of deformation and stress analysis on the surface of the artificial dam indicate that within 0-500 ms, the central part of the explosion facing surface is always under compressive stress. The maximum lateral displacement of the central node is 0.319 mm. Due to the effect of cutting, the artificial dam is subjected to tensile stress around it, where the maximum tensile and shear stresses occur. The dynamic response of the loess interlayer is in the order of "compression - compaction - plastic deformation - pressure transfer", during which the loess plays a buffering role, with a maximum displacement of 0.067 5 mm. The wall of the explosion backing side undergoes mechanical response due to the compression of the loess interlayer. But the stress is relatively small, and the outer wall is basically in a safe state.
  • [1]
    卞正富,周跃进,曾春林,等. 废弃矿井抽水蓄能地下水库构建的基础问题探索[J]. 煤炭学报,2021,46(10):3308-3318. DOI: 10.13225/j.cnki.jccs.yg21.0392

    BIAN Zhengfu,ZHOU Yuejin,ZENG Chunlin,et al. Discussion of the basic problems for the construction of underground pumped storage reservoir in abandoned coal mines[J]. Journal of China Coal Society,2021,46(10):3308-3318. DOI: 10.13225/j.cnki.jccs.yg21.0392
    [2]
    王德明,邵振鲁,朱云飞. 煤矿热动力重大灾害中的几个科学问题[J]. 煤炭学报,2021,46(1):57-64. DOI: 10.13225/j.cnki.jccs.YG20.1798

    WANG Deming,SHAO Zhenlu,ZHU Yunfei. Several scientific issues on major thermodynamic disasters in coal mines[J]. Journal of China Coal Society,2021,46(1):57-64. DOI: 10.13225/j.cnki.jccs.YG20.1798
    [3]
    杨书召,景国勋,贾智伟,等. 矿井瓦斯爆炸高速气流的破坏和伤害特性研究[J]. 中国安全科学学报,2009,19(5):86-90,181. DOI: 10.3969/j.issn.1003-3033.2009.05.014

    YANG Shuzhao,JING Guoxun,JIA Zhiwei,et al. Study on the damaging characteristics of high-speed air flow produced by gas explosion in coal mines[J]. China Safety Science Journal,2009,19(5):86-90,181. DOI: 10.3969/j.issn.1003-3033.2009.05.014
    [4]
    袁芙蓉. 瓦斯/煤尘爆炸冲击波作用下结构的动力响应探讨[J]. 煤矿机械,2017,38(6):65-67. DOI: 10.13436/j.mkjx.201706026

    YUAN Furong. Discussion on dynamic response of structure under gas/coal dust explosion shock wave[J]. Coal Mine Machinery,2017,38(6):65-67. DOI: 10.13436/j.mkjx.201706026
    [5]
    程方明,邓军,蔡周全,等. 瓦斯积聚范围对独头巷道瓦斯爆炸冲击波破坏特征与传播规律的影响[J]. 矿业安全与环保,2016,43(4):1-5,9. DOI: 10.3969/j.issn.1008-4495.2016.04.001

    CHENG Fangming,DENG Jun,CAI Zhouquan,et al. Influence of gas accumulation scope on destroying characteristics and propagation laws of gas explosion pressure waves in a blind tunnel[J]. Mining Safety & Environmental Protection,2016,43(4):1-5,9. DOI: 10.3969/j.issn.1008-4495.2016.04.001
    [6]
    付搏涛,李钢,张红,等. 基于GDEM−PDyna的尾矿库溃坝三维数值模拟分析研究[J]. 中国安全生产科学技术,2023,19(2):71-77.

    FU Botao,LI Gang,ZHANG Hong,et al. Three-dimensional numerical simulation analysis of tailings dam break based[J]. Journal of Safety Science and Technology,2023,19(2):71-77.
    [7]
    朱传杰,林柏泉,江丙友,等. 煤矿瓦斯爆炸冲击波多相破坏效应研究[J]. 中国矿业大学学报,2013,42(5):718-724,730. DOI: 10.13247/j.cnki.jcumt.2013.05.003

    ZHU Chuanjie,LIN Baiquan,JIANG Bingyou,et al. Multiphase destructive effects of shock wave resulting from coal mine gas explosion[J]. Journal of China University of Mining & Technology,2013,42(5):718-724,730. DOI: 10.13247/j.cnki.jcumt.2013.05.003
    [8]
    罗新荣,杨欢,李梦坤. 围压加载条件下岩体损伤特征实验及数值模拟分析[J]. 矿业安全与环保,2019,46(3):18-22. DOI: 10.3969/j.issn.1008-4495.2019.03.004

    LUO Xinrong,YANG Huan,LI Mengkun. Experimental and numerical analysis of damage characteristic of rock mass under the condition of confining pressure loading[J]. Mining Safety &Environmental Protection,2019,46(3):18-22. DOI: 10.3969/j.issn.1008-4495.2019.03.004
    [9]
    景一,张西西,程健维. 基于ANSYS数值模拟的密闭墙抗爆冲击安全性分析[J]. 煤矿安全,2017,48(11):194-197. DOI: 10.13347/j.cnki.mkaq.2017.11.052

    JING Yi,ZHANG Xixi,CHENG Jianwei. Safety analysis of anti-explosive and anti-impacted airtight wall based on ANSYS numerical simulation[J]. Safety in Coal Mines,2017,48(11):194-197. DOI: 10.13347/j.cnki.mkaq.2017.11.052
    [10]
    朱邵飞,叶青,柳伟,等. 瓦斯爆炸对地下巷道破坏效应的数值模拟分析[J]. 湖南科技大学学报(自然科学版),2019,34(4):17-23.

    ZHU Shaofei,YE Qing,LIU Wei,et al. Numerical simulation analysis of damage effects of gas explosion to underground roadways[J]. Journal of Hunan University of Science and Technology (Natural Science Edition),2019,34(4):17-23.
    [11]
    ZHANG Xixi,CHENG Jianwei,SHI Congling. Damage assessment for underground brick seal under explosion impact load[J]. Arabian Journal of Geosciences,2021,14(5). DOI: 10.1007/s12517-021-06681-8.
    [12]
    CHENG Jianwei,SONG Wanting,JING Yi,et al. Research on mine seal stability under explosion load and ground pressure in underground coal mines[J]. Archives of Mining Sciences,2020,65(1):71-87.
    [13]
    王最. 瓦斯爆炸波冲击作用下夹层密闭墙动力响应特性与结构优化研究[D]. 徐州:中国矿业大学,2022.

    WANG Zui. Study on dynamic response characteristics and structural optimization of sandwich seals under the impact of gas explosion wave[D]. Xuzhou:China University of Mining and Technology,2022.
    [14]
    池明波,李鹏,曹志国,等. 煤矿地下水库平板型人工坝体抗震性能分析[J]. 煤炭学报,2023,48(3):1179-1191.

    CHI Mingbo,LI Peng,CAO Zhiguo,et al. Seismic performance analysis of flat artificial dam of underground reservoir in coal mine[J]. Journal of China Coal Society,2023,48(3):1179-1191.
    [15]
    孔繁龙,刘敬东,田灵涛,等. 水岩作用下区段煤柱合理宽度研究[J]. 工矿自动化,2022,48(12):144-150.

    KONG Fanlong,LIU Jingdong,TIAN Lingtao,et al. Study on reasonable width of coal pillar under water-rock interaction[J]. Journal of Mine Automation,2022,48(12):144-150.
    [16]
    卢卫永,刘琦,屈丽娜,等. 单轴压缩条件下不同含水率煤体裂纹扩展及破坏模式研究[J]. 工矿自动化,2022,48(8):85-91.

    LU Weiyong,LIU Qi,QU Lina,et al. Study on coal crack propagation and failure mode with different moisture content under uniaxial compression[J]. Journal of Mine Automation,2022,48(8):85-91.
    [17]
    邓鹏. 地下结构在内爆炸冲击下墙柱构件上的荷载分布及其动力响应研究[D]. 天津:天津大学,2014.

    DENG Peng. The load distribution and dynamic response of walls and columns of underground structure under internal explosion[D]. Tianjin:Tianjin University,2014.
    [18]
    李志鹏. 瓦斯爆炸作用下隧道衬砌致损机理及修复技术研究[D]. 北京:北京科技大学,2019.

    LI Zhipeng. Study on damage mechanism and repair technology of tunnel lining subjected to gas explosion[D]. Beijing:University of Science and Technology Beijing,2019.
    [19]
    陈长坤,陈杰,史聪灵,等. 天然气爆炸荷载作用下地下管廊动力响应规律研究[J]. 铁道科学与工程学报,2017,14(9):1907-1914. DOI: 10.3969/j.issn.1672-7029.2017.09.015

    CHEN Changkun,CHEN Jie,SHI Congling,et al. Analysis of dynamic response of utility tunnel subjected to natural gas explosion loads[J]. Journal of Railway Science and Engineering,2017,14(9):1907-1914. DOI: 10.3969/j.issn.1672-7029.2017.09.015
    [20]
    金友平,帅健,王旭,等. 狭长受限空间内燃气燃爆灾害演化规律研究[J/OL]. 防灾减灾工程学报:1-11[2023-03-17]. DOI: 10.13409/j.cnki.jdpme.20220629004.

    JIN Youping,SHUAI Jian,WANG Xu,et al. Study on evolution law of gas explosion disaster in narrow and confined space[J/OL]. Journal of Disaster Prevention and Mitigation Engineering:1-11[2023-03-17]. DOI:10.13409/j.cnki.jdpme. 20220629004.
  • Related Articles

    [1]CHENG Lei, LI Zhengjian, SHI Haorong, WANG Xin. A bottom air temperature prediction model based on PSO-Elman neural network[J]. Journal of Mine Automation, 2024, 50(1): 131-137. DOI: 10.13272/j.issn.1671-251x.2023090062
    [2]TIAN Jie, LI Yang, ZHANG Lei, LIU Zhen. Adaptive control of temporary support force based on PSO-BP neural network[J]. Journal of Mine Automation, 2023, 49(7): 67-74. DOI: 10.13272/j.issn.1671-251x.2022100017
    [3]MO Shupei, TANG Jin, DU Yongwan, CHEN Ming. Underground adaptive positioning algorithm based on SAPSO-BP neural network[J]. Journal of Mine Automation, 2019, 45(7): 80-85. DOI: 10.13272/j.issn.1671-251x.2019010066
    [4]WEI Wenhui, GUO Ye. Boundary effects optimization of ZigBee wireless location based on BP neural network[J]. Journal of Mine Automation, 2014, 40(11): 65-70. DOI: 10.13272/j.issn.1671-251x.2014.11.016
    [5]LI Mao-dong, LIANG Yong-zhi, JIA Wen-pei, XIA Lu-yi. Application of BP neural network method based on genetic optimization in methane detectio[J]. Journal of Mine Automation, 2013, 39(2): 51-53.
    [6]FU Hua, LI Da-zhi. PID Self-tuning Control System Based on Neural Network[J]. Journal of Mine Automation, 2009, 35(7): 72-75.
    [7]ZHAO Yan-ming. Predicting Model of Gas Content Based on Improved BP Neural Network[J]. Journal of Mine Automation, 2009, 35(4): 10-13.
    [8]HAN Bing, FU Hua. Gas Monitoring System Based on Data Fusion with BP Neural Network[J]. Journal of Mine Automation, 2008, 34(4): 10-13.
    [9]GUO Xiu-cai, SHU Huai-li. Temperature Control System Based on PID Neural Network[J]. Journal of Mine Automation, 2008, 34(3): 30-32.
    [10]SHU Huai-lin , GUO Xiu-cai . PID Neural Network Control System of Multi-variable and Strong-coupled Time-varying System[J]. Journal of Mine Automation, 2003, 29(5): 16-18.
  • Cited by

    Periodical cited type(10)

    1. 尹波,彭雷祥,王正超,张磊,尹宜辰. 基于精细地质建模的开采沉陷预计算法优化与应用研究. 煤炭工程. 2025(01): 23-28 .
    2. 王忠宾,李福涛,司垒,魏东,戴嘉良,张森. 采煤机自适应截割技术研究进展及发展趋势. 煤炭科学技术. 2025(01): 296-311 .
    3. 韩晓刚,王江梅,朱万成,李荟,徐晓冬,秦涛,景树柱,韩国平. 多源数据融合的双阳煤矿精细化建模及虚拟现实平台搭建. 矿业研究与开发. 2024(03): 178-184 .
    4. 于建军,王建成,刘百祥. 基于地质物探数据的工作面透明地质模型构建研究与应用. 山东煤炭科技. 2024(04): 157-161+167+173 .
    5. 赵亦辉,周转会,杨青,孙永锋,吴振. 采煤机单刀截割曲线最优生成算法研究. 煤炭技术. 2024(06): 224-227 .
    6. 王海军,郑三龙,王相业,董敏涛,吴艳,马良,杨伟,朱玉英. 地质构造隐蔽致灾因素透明化勘查技术——以新疆屯宝煤矿为例. 煤炭科学技术. 2024(09): 173-188 .
    7. 李蔚林,赵嘉良,阮柳谭,李泽荃. 基于空间自回归插值方法的煤层厚度预测研究. 煤炭工程. 2024(S1): 112-119 .
    8. 贾建称,贾茜,桑向阳,吴艳. 我国煤矿地质保障系统建设30年:回顾与展望. 煤田地质与勘探. 2023(01): 86-106 .
    9. 李森,李重重,刘清. 基于透明地质的综采工作面规划截割协同控制系统. 煤炭科学技术. 2023(04): 175-184 .
    10. 刘亚,王静宜. 煤层智能化开采设备状态远程监测系统设计. 自动化与仪器仪表. 2023(05): 332-336 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (802) PDF downloads (15) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return