HAO Tianxuan, XU Xinge, ZHAO Lizhen. Research on image recognition methods for coal rock fractures[J]. Journal of Mine Automation,2023,49(10):68-74. DOI: 10.13272/j.issn.1671-251x.2022120081
Citation: HAO Tianxuan, XU Xinge, ZHAO Lizhen. Research on image recognition methods for coal rock fractures[J]. Journal of Mine Automation,2023,49(10):68-74. DOI: 10.13272/j.issn.1671-251x.2022120081

Research on image recognition methods for coal rock fractures

More Information
  • Received Date: December 26, 2022
  • Revised Date: September 09, 2023
  • Available Online: October 24, 2023
  • Coal rock fractures are closely related to gas migration and affect the stability of coal rock. Studying the complex fracture system in coal rock is of great significance for roadway support and gas extraction. At present, the recognition methods for coal rock fracture images fail to comprehensively consider the features of the number, position, morphology, and category of fracture in coal rock images, making it difficult to obtain effective information. Taking the coal rock images of excavation face in the No.8 Coal Mine of Hebi Coal and Electricity Co., Ltd. as the research object, a pixel level intelligent recognition method based on U-Net network for coal rock fractures and categories is proposed. The histogram equalization, Gaussian bilateral filtering, and Laplace operator are used to preprocess coal rock images to improve image quality and extract fracture feature information more effectively. The features of coal rock fractures are recorded by observing and divided into 7 categories, the selected coal rock fracture images are amplified, and the images are annotated at the pixel level using Labelme software to establish a coal rock fracture dataset. The U-Net network is used to construct a coal rock fracture recognition model. After debugging, the network batch size and learning rate parameters are determined. The experiment shows that when the number of iterations reaches 300 or more, the average recognition accuracy of the model is 87%, the average recall rate is 92%, the average intersection to parallel ratio is greater than 85%, and the average pixel accuracy of the category is greater than 80%. The coal rock fracture recognition model is validated by collecting underground coal rock mining fractures and laboratory tensile exogenous fractures. The results show that the model can effectively extract target feature information and distinguish it from background feature information, and can accurately locate and recognize a single fracture.
  • [1]
    刘建华,王生维,粟冬梅. 二连盆地群低煤阶煤储层裂隙地质建模与精细描述[J]. 煤炭科学技术,2022,50(5):198-207.

    LIU Jianhua,WANG Shengwei,SU Dongmei. Geological modeling and fine description of fractures in low coal rank coal reservoirs of Erlian Basin Group[J]. Coal Science and Technology,2022,50(5):198-207.
    [2]
    韩文龙,王延斌,倪小明,等. 多期构造运动对深部煤储层物性特征影响研究[J]. 煤炭科学技术,2021,49(10):208-216. DOI: 10.13199/j.cnki.cst.2021.10.028

    HAN Wenlong,WANG Yanbin,NI Xiaoming,et al. Study on impact of multi-period tectonic movement on deep coal reservoir physical properties[J]. Coal Science and Technology,2021,49(10):208-216. DOI: 10.13199/j.cnki.cst.2021.10.028
    [3]
    王登科,魏强,魏建平,等. 煤的裂隙结构分形特征与分形渗流模型研究[J]. 中国矿业大学学报,2020,49(1):103-109,122.

    WANG Dengke,WEI Qiang,WEI Jianping,et al. Fractal characteristics of fracture structure and fractal seepage model of coal[J]. Journal of China University of Mining & Technology,2020,49(1):103-109,122.
    [4]
    MAJIDIFARD H,ADU-GYAMFI Y,BUTTLAR W G. Deep machine learning approach to develop a new asphalt pavement condition index [J]. Construction and Building Materials,2020,247. DOI: 10.1016/j.conbuildmat.2020.118513.
    [5]
    JU Huyan,LI Wei,TIGHE S,et al. Detection of sealed and unsealed cracks with complex backgrounds using deep convolutional neural network [J]. Automation in Construction,2019,107. DOI: 10.1016/j.autcon.2019.102946.
    [6]
    刘勇,崔洪庆. 基于裂隙形态特征的煤层图像裂隙识别研究[J]. 工矿自动化,2017,43(10):59-64.

    LIU Yong,CUI Hongqing. Research on coal-bed image fractures identification based on fracture shape characteristics[J]. Industry and Mine Automation,2017,43(10):59-64.
    [7]
    孙月龙,崔洪庆,关金锋. 基于图像识别的煤层井下宏观裂隙观测[J]. 煤田地质与勘探,2017,45(5):19-22.

    SUN Yuelong,CUI Hongqing,GUAN Jinfeng. Image recognition-based observation of macro fracture in coal seam in underground mine[J]. Coal Geology & Exploration,2017,45(5):19-22.
    [8]
    覃木广. 基于matlab图像识别王庄矿后备区裂隙发育方位[J]. 采矿技术,2021,21(1):173-176.

    QIN Muguang. Identification of fracture development orientation in Wangzhuang Coal Mine reserve area based on matlab image[J]. Mining Technology,2021,21(1):173-176.
    [9]
    谢配红,谭海英. 基于图像识别技术对出露危岩体裂隙发育规律统计分析[J]. 煤炭技术,2021,40(7):66-67.

    XIE Peihong,TAN Haiying. Statistical analysis of fracture development law of exposed dangerous rock mass based on image recognition technology[J]. Coal Technology,2021,40(7):66-67.
    [10]
    张庆贺,陈晨,袁亮,等. 基于DIC和YOLO算法的复杂裂隙岩石破坏过程动态裂隙早期智能识别[J]. 煤炭学报,2022,47(3):1208-1219.

    ZHANG Qinghe,CHEN Chen,YUAN Liang,et al. Early and intelligent recognition of dynamic cracks during damage of complex fractured rock masses based on DIC and YOLO algorithms[J]. Journal of China Coal Society,2022,47(3):1208-1219.
    [11]
    靳阳阳,韩现伟,周书宁,等. 图像增强算法综述[J]. 计算机系统应用,2021,30(6):18-27.

    JIN Yangyang,HAN Xianwei,ZHOU Shuning,et al. Review on image enhancement algorithms[J]. Computer Systems & Applications,2021,30(6):18-27.
    [12]
    LAURENT C,JEAN-PHILIPPE T,PIERRE C. The guided bilateral filter:when the joint/cross bilateral filter becomes robust[J]. IEEE Transactions on Image Processing,2015,24(4):1199-1208.
    [13]
    陈春谋. 基于直方图均衡化与拉普拉斯的铅条图像增强算法[J]. 国外电子测量技术,2019,38(7):131-135.

    CHEN Chunmou. Lead line image enhancement algorithm based on histogram equalization and Laplacian[J]. Foreign Electronic Measurement Technology,2019,38(7):131-135.
    [14]
    王兆会,孙文超,水艳婷,等. 预制裂隙类岩石试件表面变形场演化与裂隙扩展机理研究[J/OL]. 煤炭科学技术:1-11 [2022-12-11]. https://doi.org/10.13199/j.cnki.cst.2022-1447.

    WANG Zhaohui,SUN Wenchao,SHUI Yanting,et al. Surface deformation field and fracture propagation mechanism of rock-like samples with pre-existing fracture[J/OL]. Coal Science and Technology:1-11 [2022-12-11]. https://doi.org/10.13199/j.cnki.cst.2022-1447.
    [15]
    曾勇,屈永华,宋金宝. 煤层裂隙系统及其对煤层气产出的影响[J]. 江苏地质,2000(2):91-94.

    ZENG Yong,QU Yonghua,SONG Jinbao. The coal seam system of fissures and their influence on the occurrence of coal seams[J]. Jiangsu Geology,2000(2):91-94.
    [16]
    SUN C,SHRIVASTAVA A,SINGH S,et al. Revisiting unreasonable effectiveness of data in deep learning era[C]. IEEE International Conference on Computer Vision,Venice,2017. DOI: 10.1109/ICCV.2017.97.
    [17]
    HESTNESS J, NARANG S, ARDALANI N, et al. Deep learning scaling is predictable, empirically[EB/OL]. [2022-12-02]. https://doi.org/10.48550/arXiv.1712.00409.

    HESTNESS J,NARANG S,ARDALANI N,et al. Deep learning scaling is predictable,empirically[EB/OL]. [2022-12-02]. https://doi.org/10.48550/arXiv.1712.00409.
    [18]
    JABRI A,JOULIN A,MAATEN L,et al. Learning visual features from large weakly supervised data[C]. European Conference on Computer Vision, Amsterdam,2016. DOI: 10.1007/978-3-319-46478-7_5.
    [19]
    薛珊,张振,吕琼莹,等. 基于卷积神经网络的反无人机系统图像识别方法[J]. 红外与激光工程,2020,49(7):250-257.

    XUE Shan,ZHANG Zhen,LYU Qiongying,et al. Image recognition method of anti UAV system based on convolutional neural network[J]. Infrared and Laser Engineering,2020,49(7):250-257.
    [20]
    周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报,2017,40(6):1229-1251.

    ZHOU Feiyan,JIN Linpeng,DONG Jun. Review of convolutional neural network[J]. Chinese Journal of Computers,2017,40(6):1229-1251.
    [21]
    林丽,刘新,朱俊臻,等. 基于CNN的金属疲劳裂纹超声红外热像检测与识别方法研究[J]. 红外与激光工程,2022,51(3):475-483.

    LIN Li,LIU Xin,ZHU Junzhen,et al. Research on vibrothermography detection and recognition method of metal fatigue cracks based on CNN[J]. Infrared and Laser Engineering,2022,51(3):475-483.
    [22]
    杨凯,罗帅,王勇,等. 基于U−Net的列车轮对激光曲线提取[J]. 无损检测,2021,43(1):19-23.

    YANG Kai,LUO Shuai,WANG Yong,et al. Laser curve extraction of train wheelset based on U-Net[J]. Nondestructive Testing,2021,43(1):19-23.
  • Related Articles

    [1]CAO Xiangang, DUAN Yong, ZHAO Jiangbin, YANG Xin, ZHAO Fuyuan, FAN Hongwei. Summary of research on health status assessment of fully mechanized mining equipment[J]. Journal of Mine Automation, 2023, 49(9): 23-35, 97. DOI: 10.13272/j.issn.1671-251x.18143
    [2]QIAO Jiawei, TIAN Muqin. Health condition assessment of centrifugal pump based on AHP-TOPSIS comprehensive evaluation method[J]. Journal of Mine Automation, 2022, 48(9): 69-76. DOI: 10.13272/j.issn.1671-251x.17984
    [3]LI Man, PAN Nannan, DUAN Yong, CAO Xiangang. Construction of health index and condition assessment of coal mine rotating machinery[J]. Journal of Mine Automation, 2022, 48(9): 33-41. DOI: 10.13272/j.issn.1671-251x.18004
    [4]LIU Yi, ZHANG Weitao, ZHANG Fan. Fatigue state perception in underground production operation practice[J]. Journal of Mine Automation, 2022, 48(2): 114-118,130. DOI: 10.13272/j.issn.1671-251x.17875
    [5]CAO Xiangang, LI Yanchuan, LEI Zhuo, LEI Yinan. Research on intelligent evaluation method of health state of shearer[J]. Journal of Mine Automation, 2020, 46(6): 41-47. DOI: 10.13272/j.issn.1671-251x.17596
    [6]MEN Rujia, LEI Zhipeng, LIN Lingyan, ZHANG Guodong, ZHAO Ruixue, ZHU Jianfei, XU Chunyu, SONG Jiancheng, TIAN Muqin. Insulation state assessment of mine-used ethylene propylene rubber cable under electro-thermal aging[J]. Journal of Mine Automation, 2019, 45(4): 67-71. DOI: 10.13272/j.issn.1671-251x.2019010038
    [7]ZHANG Yuzhen, JI Xingquan, YU Yongjin, LIANG Yongliang, FAN Shuxian. Insulation condition assessment method of mine-used transformer based on spatio-temporal information fusio[J]. Journal of Mine Automation, 2017, 43(9): 75-82. DOI: 1671-251X(2017)09-0075-08DOI:10.13272/j.issn.1671-251x.2017.09.014
    [8]WANG Jingtao, LU Jingui, ZHU Zhengquan, QIAN Peng, LIN Xiaochuan, WANG Bangxiang. Approximate estimation of fatigue life of hydraulic support[J]. Journal of Mine Automation, 2017, 43(3): 39-42. DOI: 10.13272/j.issn.1671-251x.2017.03.009
    [9]YAO Lingling, HE Naibao, GAO Qian, SONG Wei. Fatigue life prediction method of hydraulic support front link[J]. Journal of Mine Automation, 2015, 41(10): 46-48. DOI: 10.13272/j.issn.1671-251x.2015.10.012
    [10]LI Bo, HUANG Yuan-yue. Underground Risk Assessing Method Based on Rough Set and D-S Evidence Theory[J]. Journal of Mine Automation, 2011, 37(11): 38-40.
  • Cited by

    Periodical cited type(9)

    1. 王丽丽. 基于改进RRT算法的井下巷道漫游路径规划方法. 现代电子技术. 2024(12): 62-68 .
    2. 薛光辉,刘爽,王梓杰,李亚男. 基于改进概率路线图算法的煤矿机器人路径规划方法. 工矿自动化. 2023(06): 175-181 . 本站查看
    3. 韩国国,范柄尧. 差分进化算法在煤矿井下移动设备路径规划的应用研究. 中国设备工程. 2022(19): 91-92 .
    4. 郭泰,颜铤. 煤矿救援机器人路径规划的蚁群优化算法. 能源与环保. 2021(11): 233-238 .
    5. 封硕,谢廷船,康靖,李建良. 基于双粒子群算法的矿井搜救机器人路径规划. 工矿自动化. 2020(01): 65-71 . 本站查看
    6. 武达,王然风,付翔,梁毅. 矿用机器人局部路径优化算法研究. 煤炭工程. 2020(03): 132-136 .
    7. 侯力扬,李金宝. 煤矿井下水仓智能清淤机器人的路径规划算法研究. 电子测量技术. 2020(19): 75-79 .
    8. 孟广雄,闫海勇,刘俊梅,田军,黄国坤. 炸药混装车智能精准装药系统构建及效益分析. 煤炭工程. 2020(S2): 1-5 .
    9. 李佳儒,王玉珍. 新零售背景下生鲜食品超市配送路径优化研究. 邵阳学院学报(自然科学版). 2019(03): 27-35 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (132) PDF downloads (46) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return