Volume 49 Issue 5
May  2023
Turn off MathJax
Article Contents
DONG Peipei, XU Yanhong, WANG Anyi, et al. Design of a mine high isolation tri-band MIMO antenna[J]. Journal of Mine Automation,2023,49(5):127-132.  doi: 10.13272/j.issn.1671-251x.2022090089
Citation: DONG Peipei, XU Yanhong, WANG Anyi, et al. Design of a mine high isolation tri-band MIMO antenna[J]. Journal of Mine Automation,2023,49(5):127-132.  doi: 10.13272/j.issn.1671-251x.2022090089

Design of a mine high isolation tri-band MIMO antenna

doi: 10.13272/j.issn.1671-251x.2022090089
  • Received Date: 2022-09-29
  • Rev Recd Date: 2023-05-18
  • Available Online: 2022-12-13
  • Due to space limitations, multi frequency multiple-input multiple-output (MIMO) antennas have strong coupling problems caused by small unit spacing. In order to solve the above problems, a mine high isolation tri-band MIMO antenna has been designed. By loading two L-shaped branches at both ends of a rectangular branch to form a trident monopole antenna, the antenna has tri-band features. Two trident monopole antenna units are placed symmetrically. A T-shaped branch is loaded on the metal floor between the two units. The opposite current generated by parasitic branches is used to offset the coupling current without branches. Two symmetrical rectangular slots are etched to suppress the mutual coupling caused by surface waves on the floor by changing the current distribution on the floor. The high isolation of the antenna throughout the entire band is achieved. The simulation results show that the antenna operates in frequency bands of 1.85-2.70, 3.24-3.99, 4.65-5.80 GHz, can effectively covering coal mines' underground WiMAX/WiFi/4G/5G NR operating band. The isolation of the antenna in three bands is greater than 20, 22, 22 dB, respectively. It is 11, 9, 10 dB higher than the isolation of the antenna before decoupling; The envelope correlation coefficient is less than 0.2, indicating good diversity performance. The antenna has stable gain variation within the operating band and good omnidirectional radiation features. This antenna has the advantages of simple and compact structure, easy processing, and low profile. It has a wide range of application scenarios in wireless communication in coal mines.

     

  • loading
  • [1]
    张志文,徐艳红,周梦丽,等. 矿用多频段微带天线设计[J]. 工矿自动化,2022,48(7):125-129.

    ZHANG Zhiwen,XU Yanhong,ZHOU Mengli,et al. Design of multi-band microstrip antenna[J]. Journal of Mine Automation,2022,48(7):125-129.
    [2]
    霍羽,张毅,徐钊,等. 煤矿井巷自适应多天线理论与关键技术研究[J]. 工矿自动化,2017,43(10):48-53. doi: 10.13272/j.issn.1671-251x.2017.10.010

    HUO Yu,ZHANG Yi,XU Zhao,et al. Theory and key technologies research on adaptive multi-antenna in coal mine tunnel[J]. Industry and Mine Automation,2017,43(10):48-53. doi: 10.13272/j.issn.1671-251x.2017.10.010
    [3]
    RAMACHANDRAN A,MATHEW S,RAJAN V,et al. A compact triband quad-element MIMO antenna using SRR ring for high isolation[J]. IEEE Antennas and Wireless Propagation Letters,2017,16(99):1409-1412.
    [4]
    SUI Jiangwei,HUANG Cuixia,CHENG Yifeng. Multi-element fully-decoupled inverted-F antennas for mobile terminals[J]. IEEE Transactions on Antennas and Propagation,2022,70(11):10076-10085. doi: 10.1109/TAP.2022.3187132
    [5]
    SONG Simin,CHEN Xiaoming,DA Yiran,et al. Broadband dielectric resonator antenna array with enhancement of isolation and front-to-back ratio for MIMO application[J]. IEEE Antennas and Wireless Propagation Letters,2022,21(7):1487-1491. doi: 10.1109/LAWP.2022.3172209
    [6]
    CHEN S C,WANG Y S,CHUNG S J,et al. A decoupling technique for increasing the port isolation between two strongly coupled antennas[J]. IEEE Transactions on Antennas and Propagation,2008,56(12):3650-3658. doi: 10.1109/TAP.2008.2005469
    [7]
    高振斌,安星. 三频段MIMO天线的双中和线去耦合设计[J]. 河北工业大学学报,2020,49(4):47-53,82. doi: 10.14081/j.cnki.hgdxb.2020.04.006

    GAO Zhenbin,AN Xing. Double neutralization lines decoupling design for tri-band MIMO antenna[J]. Journal of Hebei University of Technology,2020,49(4):47-53,82. doi: 10.14081/j.cnki.hgdxb.2020.04.006
    [8]
    SU S W,LEE C T,CHANG F S. Printed MIMO-antenna system using neutralization-line technique for wireless USB-dongle applications[J]. IEEE Transactions on Antennas and Propagation,2012,60(2):456-463. doi: 10.1109/TAP.2011.2173450
    [9]
    ZHANG Shuai,PEDERSEN G F. Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line[J]. IEEE Antennas and Wireless Propagation Letters,2016,15:166-169. doi: 10.1109/LAWP.2015.2435992
    [10]
    CAPOBIANCO A D,PIGOZZO F M,ASSALINI A,et al. A compact MIMO array of planar end-fire antennas for WLAN applications[J]. IEEE Transactions on Antennas and Propagation,2011,59(9):3462-3465. doi: 10.1109/TAP.2011.2161557
    [11]
    LIU Feng,GUO Jiayin,ZHAO Luyu,et al. A meta-surface decoupling method for two linear polarized antenna arrays in sub-6 GHz base station applications[J]. IEEE Access,2019,7:2759-2768. doi: 10.1109/ACCESS.2018.2886641
    [12]
    WANG Ziyang,ZHAO Luyu,CAI Yuanming,et al. A meta-surface antenna array decoupling (MAAD) method for mutual coupling reduction in a MIMO antenna system[J]. Scientific Reports,2018,8(3152):1-9.
    [13]
    南敬昌, 潘俊汝, 高明明, 等. 具有高隔离度的紧凑型三陷波UWB-MIMO天线设计[J/OL]. 电波科学学报: 1-10[2023-05-16]. http://kns.cnki.net/kcms/detail/41.1185.TN.20230104.1638.002.html.

    NAN Jingchang, PAN Junru, GAO Mingming, et al. Compact triple trap UWB-MIMO antenna design with high isolation[J/OL]. Chinese Journal of Radio Science: 1-10[2023-05-16]. http://kns.cnki.net/kcms/detail/41.1185.TN.20230104.1638.002.html.
    [14]
    IKRAM M,NGUYEN-TRONG N,ABBOSH A M. Realization of a tapered slot array as both decoupling and radiating structure for 4G/5G wireless devices[J]. IEEE Access,2019,7:159112-159118. doi: 10.1109/ACCESS.2019.2950660
    [15]
    王再跃,汪建安,安凯,等. 一种基于寄生单元结构的高隔离度MIMO天线[J]. 电子制作,2023,31(2):75-77,119. doi: 10.16589/j.cnki.cn11-3571/tn.2023.02.018

    WANG Zaiyue,WANG Jian'an,AN Kai,et al. A high isolation MIMO antenna based on parasitic element structure[J]. Practical Electronics,2023,31(2):75-77,119. doi: 10.16589/j.cnki.cn11-3571/tn.2023.02.018
    [16]
    黄涛, 杨雪霞. 一种结构紧凑的高隔离度MIMO天线[J/OL]. 无线电工程: 1-7[2023-05-16]. http://kns.cnki.net/kcms/detail/13.1097.TN.20230424.1756.026.html.

    HUANG Tao, YANG Xuexia. A compact MIMO antenna with high isolation[J/OL]. Radio Engineering: 1-7[2023-05-16]. http://kns.cnki.net/kcms/detail/13.1097.TN.20230424.1756.026.html.
    [17]
    王鹏,程号迪,韩国瑞. 应用于5G的高隔离双频MIMO天线设计[J]. 测试技术学报,2023,37(2):165-169,184.

    WANG Peng,CHENG Haodi,HAN Guorui. Design of high isolation dual-band MIMO antenna for 5G[J]. Journal of Test and Measurement Technology,2023,37(2):165-169,184.
    [18]
    NIU Zicheng,ZHANG Hou,CHEN Qiang,et al. Isolation enhancement in closely coupled dual-band MIMO patch antennas[J]. IEEE Antennas and Wireless Propagation Letters,2019,18(8):1686-1690. doi: 10.1109/LAWP.2019.2928230
    [19]
    SU S W,LEE C T,HSIAO Y W. Compact two-inverted-F-antenna system with highly integrated π-shaped decoupling structure[J]. IEEE Transactions on Antennas and Propagation,2019,67(9):6182-6186. doi: 10.1109/TAP.2019.2925286
    [20]
    虞成城,任周游,赵安平. 一种用于5G移动通信终端的双频MIMO天线系统[J]. 微波学报,2019,35(6):40-44. doi: 10.14183/j.cnki.1005-6122.201906008

    YU Chengcheng,REN Zhouyou,ZHAO Anping. A dual-band MIMO antenna system for 5G mobile terminals[J]. Journal of Microwaves,2019,35(6):40-44. doi: 10.14183/j.cnki.1005-6122.201906008
    [21]
    REN Zhouyou,ZHAO Anping,WU Shengjie. MIMO antenna with compact decoupled antenna pairs for 5G mobile terminals[J]. IEEE Antennas and Wireless Propagation Letters,2019,18(7):1367-1371. doi: 10.1109/LAWP.2019.2916738
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (364) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return