Citation: | YANG Yi, WANG Shengwen, CUI Kefei, et al. Intelligent decision-making method for coal caving based on fuzzy deep Q-network[J]. Journal of Mine Automation,2023,49(4):78-85. doi: 10.13272/j.issn.1671-251x.2022090068 |
[1] |
李爽,薛广哲,方新秋,等. 煤矿智能化安全保障体系及关键技术[J]. 煤炭学报,2020,45(6):2320-2330.
LI Shuang,XUE Guangzhe,FANG Xinqiu,et al. Coal mine intelligent safety system and key technologies[J]. Journal of China Coal Society,2020,45(6):2320-2330.
|
[2] |
葛世荣,郝尚清,张世洪,等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术,2020,48(7):28-46.
GE Shirong,HAO Shangqing,ZHANG Shihong,et al. Status of intelligent coal mining technology and potential key technologies in China[J]. Coal Science and Technology,2020,48(7):28-46.
|
[3] |
张守祥,张学亮,刘帅,等. 智能化放顶煤开采的精确放煤控制技术[J]. 煤炭学报,2020,45(6):2008-2020.
ZHANG Shouxiang,ZHANG Xueliang,LIU Shuai,et al. Intelligent precise control technology of fully mechanized top coal caving face[J]. Journal of China Coal Society,2020,45(6):2008-2020.
|
[4] |
LIANG Minfu,HU Chengjun,YU Rui,et al. Optimization of the process parameters of fully mechanized top-coal caving in thick-seam coal using BP neural networks[J]. Sustainability,2022,14(3):1340-1357. doi: 10.3390/su14031340
|
[5] |
王国法,庞义辉. 特厚煤层大采高综采综放适应性评价和技术原理[J]. 煤炭学报,2018,43(1):33-42.
WANG Guofa,PANG Yihui. Full-mechanized coal mining and caving mining method evaluation and key technology for thick coal seam[J]. Journal of China Coal Society,2018,43(1):33-42.
|
[6] |
霍昱名. 厚煤层综放开采顶煤破碎机理及智能化放煤控制研究[D]. 太原: 太原理工大学, 2021.
HUO Yuming. Research on failure mechanism and intelligent drawing control of top coal in thick coal seam[D]. Taiyuan: Taiyuan University of Technology, 2021.
|
[7] |
马英. 基于记忆放煤时序控制的智能放煤模式研究[J]. 煤矿机电,2015,36(2):1-5. doi: 10.3969/j.issn.1001-0874.2015.02.001
MA Ying. Research on intelligent coal caving system based on memory coal caving sequential control[J]. Colliery Mechanical & Electrical Technology,2015,36(2):1-5. doi: 10.3969/j.issn.1001-0874.2015.02.001
|
[8] |
李庆元,杨艺,李化敏,等. 基于Q-learning模型的智能化放顶煤控制策略[J]. 工矿自动化,2020,46(1):72-79.
LI Qingyuan,YANG Yi,LI Huamin,et al. Intelligent control strategy for top coal caving based on Q-learning model[J]. Industry and Mine Automation,2020,46(1):72-79.
|
[9] |
罗开成,高阳,杨艺,等. 基于均值偏差奖赏函数的放煤口控制策略研究[J]. 煤炭工程,2022,54(9):105-111.
LUO Kaicheng,GAO Yang,YANG Yi,et al. Intelligent control strategy of drawing window in top-coal caving based on mean deviation reward function[J]. Coal Engineering,2022,54(9):105-111.
|
[10] |
杨艺,李庆元,李化敏,等. 基于批量式强化学习的群组放煤智能决策研究[J]. 煤炭科学技术,2022,50(10):188-197. doi: 10.13199/j.cnki.cst.2020-1438
YANG Yi,LI Qingyuan,LI Huamin,et al. Research on intelligent decision-making for group top-coal caving based on batch reinforcement learning[J]. Coal Science and Technology,2022,50(10):188-197. doi: 10.13199/j.cnki.cst.2020-1438
|
[11] |
YANG Yi,LI Xinwei,LI Huaming,et al. Deep Q-network for optimal decision for top-coal caving[J]. Energies,2020,13(7):1618-1630. doi: 10.3390/en13071618
|
[12] |
YANG Yi,LIN Zhiwei,LI Bingfeng,et al. Hidden Markov random field for multi-agent optimal decision in top-coal caving[J]. IEEE Access,2020,8:76596-76609. doi: 10.1109/ACCESS.2020.2984786
|
[13] |
WANG Haixing,YANG Yi,LIN Zhiwei,et al. Multi-agent reinforcement learning with optimal equivalent action of neighborhood[J]. Actuators,2022,11(4):99. DOI: 10.3390/act11040099.
|
[14] |
袁甜甜,李凤莲,张雪英,等. 特征降维的深度强化学习脑卒中分类预测研究[J]. 重庆理工大学学报(自然科学),2023,37(3):194-203.
YUAN Tiantian,LI Fenglian,ZHANG Xueying,et al. Classification and prediction research of stroke based on deep reinforcement learning with feature dimension reduction[J]. Journal of Chongqing University of Technology(Natural Science),2023,37(3):194-203.
|
[15] |
SUTTON R S. Learning to predict by the methods of temporal differences[J]. Machine Learning,1988,3(1):9-44.
|
[16] |
MNIH V,KAVUKCUOGLU K,SLIVER D,et al. Human-level control through deep reinforcement learning[J]. Nature,2015,518:529-533. doi: 10.1038/nature14236
|
[17] |
封硕,舒红,谢步庆. 基于改进深度强化学习的三维环境路径规划[J]. 计算机应用与软件,2021,38(1):250-255. doi: 10.3969/j.issn.1000-386x.2021.01.042
FENG Shuo,SHU Hong,XIE Buqing. 3D environment path planning based on improved deep reinforcement learning[J]. Computer Applications and Software,2021,38(1):250-255. doi: 10.3969/j.issn.1000-386x.2021.01.042
|
[18] |
黎声益,马玉敏,刘鹃. 基于双深度Q学习网络的面向设备负荷稳定的智能车间调度方法[J]. 计算机集成制造系统,2023,29(1):91-99. doi: 10.13196/j.cims.2023.01.008
LI Shengyi,MA Yumin,LIU Juan. Smart shop floor scheduling method for equipment load stabilization based on double deep Q-learning network[J]. Computer Integrated Manufacturing Systems,2023,29(1):91-99. doi: 10.13196/j.cims.2023.01.008
|
[19] |
李忠信,王大龙,庄佳才,等. 基于遗传模糊控制的风电机组偏航系统疲劳载荷研究[J]. 动力工程学报,2022,42(8):745-752,768. doi: 10.19805/j.cnki.jcspe.2022.08.008
LI Zhongxin,WANG Dalong,ZHUANG Jiacai,et al. Research on fatigue suppression of wind turbine yaw system based on genetic fuzzy control[J]. Journal of Chinese Society of Power Engineering,2022,42(8):745-752,768. doi: 10.19805/j.cnki.jcspe.2022.08.008
|
[20] |
张虎雄,李红卫,马祥. 模糊控制在煤矿智能化开采中的应用[J]. 煤矿机械,2022,43(12):206-210. doi: 10.13436/j.mkjx.202212062
ZHANG Huxiong,LI Hongwei,MA Xiang. Application of fuzzy control in intelligent mining of coal mine[J]. Coal Mine Machinery,2022,43(12):206-210. doi: 10.13436/j.mkjx.202212062
|
[21] |
沈志熙,代东林,赵凯. 基于多特征分步模糊推理的边缘检测算法[J]. 电子科技大学学报,2014,43(3):381-387. doi: 10.3969/j.issn.1001-0548.2014.03.011
SHEN Zhixi,DAI Donglin,ZHAO Kai. Edge detection based on multi-features and step-by-step fuzzy inference[J]. Journal of University of Electronic Science and Technology of China,2014,43(3):381-387. doi: 10.3969/j.issn.1001-0548.2014.03.011
|