Citation: | DU Qing, YANG Shijiao, GUO Qinpeng, et al. Intelligent detection method of working personnel wearing safety helmets in underground mine[J]. Journal of Mine Automation,2023,49(7):134-140. doi: 10.13272/j.issn.1671-251x.2022090033 |
[1] |
李超. 现代化矿山救护技术装备问题分析[J]. 中国金属通报,2021(11):116-117.
LI Chao. Analysis of modern mine rescue technology and equipment[J]. China Metal Bulletin,2021(11):116-117.
|
[2] |
陈杰. 智慧矿山安全防控多系统井下融合与应急联动技术研究[J]. 煤矿安全,2022,53(5):99-105.
CHEN Jie. Research on multi-system underground integration and emergency linkage technology for smart mine safety prevention and control[J]. Safety in Coal Mines,2022,53(5):99-105.
|
[3] |
张立艺,武文红,牛恒茂,等. 深度学习中的安全帽检测算法应用研究综述[J]. 计算机工程与应用,2022,58(16):1-17. doi: 10.3778/j.issn.1002-8331.2203-0580
ZHANG Liyi,WU Wenhong,NIU Hengmao,et al. Summary of application research on helmet detection algorithm based on deep learning[J]. Computer Engineering and Applications,2022,58(16):1-17. doi: 10.3778/j.issn.1002-8331.2203-0580
|
[4] |
孙国栋,李超,张航. 融合自注意力机制的安全帽佩戴检测方法[J]. 计算机工程与应用,2022,58(20):300-304. doi: 10.3778/j.issn.1002-8331.2103-0372
SUN Guodong,LI Chao,ZHANG Hang. Safety helmet wearing detection method fused with self-attention mechanism[J]. Computer Engineering and Applications,2022,58(20):300-304. doi: 10.3778/j.issn.1002-8331.2103-0372
|
[5] |
李晓宇,陈伟,杨维,等. 基于超像素特征与SVM分类的人员安全帽分割方法[J]. 煤炭学报,2021,46(6):2009-2022.
LI Xiaoyu,CHEN Wei,YANG Wei,et al. Segmentation method for personnel safety helmet based on super-pixel features and SVM classification[J]. Journal of China Coal Society,2021,46(6):2009-2022.
|
[6] |
毕林,谢伟,崔君. 基于卷积神经网络的矿工安全帽佩戴识别研究[J]. 黄金科学技术,2017,25(4):73-80. doi: 10.11872/j.issn.1005-2518.2017.04.073
BI Lin,XIE Wei,CUI Jun. Identification research on the miner's safety helmet wear based on convolutional neural network[J]. Gold Science and Technology,2017,25(4):73-80. doi: 10.11872/j.issn.1005-2518.2017.04.073
|
[7] |
仝泽友,冯仕民,侯晓晴,等. 基于安全帽佩戴检测的矿山人员违规行为研究[J]. 电子科技,2019,32(9):26-31. doi: 10.16180/j.cnki.issn1007-7820.2019.09.006
TONG Zeyou,FENG Shimin,HOU Xiaoqing,et al. Recognition of underground miners' rule-violated behavior based on safety helmet detection[J]. Electronic Science and Technology,2019,32(9):26-31. doi: 10.16180/j.cnki.issn1007-7820.2019.09.006
|
[8] |
REDMON J, FARHADI A. Yolov3: an incremental improvement[EB/OL]. [2022-09-03]. https://arxiv.org/abs/1804.02767.
|
[9] |
BOCHKOVSKI A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection[EB/OL]. [2022-09-03]. https://arxiv.org/abs/2004.10934.
|
[10] |
GE Zheng, LIU Songtao, WANG Feng, et al. Yolox: exceeding YOLO series in 2021[EB/OL]. [2022-09-03]. https://arxiv.org/abs/2107.08430.
|
[11] |
JAMTSHO Y,RIYAMONGKOL P,WARANUSAST R. Real-time license plate detection for non-helmeted motorcyclist using YOLO[J]. ICT Express,2021,7(1):104-109. doi: 10.1016/j.icte.2020.07.008
|
[12] |
SRIDHAR P, JAGADEESWARI M, SRI S H, et al. Helmet violation detection using YOLO v2 deep learning framework[C]. The 6th International Conference on Trends in Electronics and Informatics, Tirunelveli, 2022: 1207-1212.
|
[13] |
CHEN Meixi, KONG Rong, ZHU Jianming, et al. Application research of safety helmet detection based on low computing power platform using YOLO v5[C]. International Conference on Adaptive and Intelligent Systems, Suzhou, 2022: 107-117.
|
[14] |
HE Zhiwei, WU Fan, GAO Mingyu, et al. Helmet detection based on improved YOLO v3 deep model[C]. IEEE 16th International Conference on Networking, Sensing and Control, Alberta, 2019: 363-368.
|
[15] |
XIE Wenqin,XIE Lei,ZHANG Linzhi,et al. Toward efficient safety helmet detection based on Yolov5 with hierarchical positive sample selection and box density filtering[J]. IEEE Transactions on Instrumentation and Measurement,2022,71:1-14.
|
[16] |
SHIRMOHAMMADI S,FERRERO A. Camera as the instrument:the rising trend of vision based measurement[J]. IEEE Instrumentation & Measurement Magazine,2014,17(3):41-47.
|
[17] |
WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2020: 390-391.
|
[18] |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Honolulu, 2017: 2117-2125.
|
[19] |
HE Kaiming,ZHANG Xiayu,REN Shaoqing,et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. doi: 10.1109/TPAMI.2015.2389824
|
[20] |
WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, 2020: 11534-11542.
|
[21] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. Proceedings of the European Conference on Computer Vision, Munich, 2018: 3-19.
|