Citation: | GUI Gaihua, YUAN Zhanjiang. Speed control method for belt conveyor based on improved BP-PID[J]. Journal of Mine Automation,2023,49(5):104-111. doi: 10.13272/j.issn.1671-251x.2022080058 |
[1] |
方崇全. 煤矿带式输送机巡检机器人关键技术研究[J]. 煤炭科学技术,2022,50(5):263-270.
FANG Chongquan. Research on key technology of inspection robot for coal mine belt conveyor[J]. Coal Science and Technology,2022,50(5):263-270.
|
[2] |
冯俊宾. 变频调速技术在带式输送机上的节能应用[J]. 机械研究与应用,2021,34(1):142-144.
FENG Junbin. Energy saving application of frequency control technology in belt conveyor[J]. Mechanical Research & Application,2021,34(1):142-144.
|
[3] |
杨春雨,顾振,张鑫,等. 基于深度学习的带式输送机煤流量双目视觉测量[J]. 仪器仪表学报,2021,41(8):164-174.
YANG Chunyu,GU Zhen,ZHANG Xin,et al. Binocular vision measurement of coal flow of belt conveyors based on deep learning[J]. Chinese Journal of Scientific Instrument,2021,41(8):164-174.
|
[4] |
胡宗镇,赵延立. 基于改进型BP神经网络自整定的PID控制[J]. 电脑与信息技术,2019,27(1):11-13.
HU Zongzhen,ZHAO Yanli. PID control based on self-adjusting BP neural network[J]. Computer and Information Technology,2019,27(1):11-13.
|
[5] |
郭伟东,李明,亢俊明,等. 基于机器视觉的矿井输煤系统优化节能控制[J]. 工矿自动化,2020,46(10):69-75.
GUO Weidong,LI Ming,KANG Junming,et al. Optimal energy saving control of mine coal transportation system based on machine vision[J]. Industry and Mine Automation,2020,46(10):69-75.
|
[6] |
WANG Guimei,LU Shenghui,LIU Jiehui,et al. Coal volume measurement of belt conveyor based on image processing[J]. Acta Metrologica Sinica,2020,41(6):724-728.
|
[7] |
曹松青,郝万君. 基于NMPC−PID的大型风电机组独立变桨距载荷控制[J]. 计算机应用与软件,2020,37(10):34-40.
CAO Songqing,HAO Wanjun. Individual pitch load control of large wind turbines based on NMPC-PID[J]. Computer Applications and Software,2020,37(10):34-40.
|
[8] |
韩东升,杜永贵,庞宇松,等. 基于预见控制的带式输送机调速节能方法[J]. 工矿自动化,2018,44(6):64-68.
HAN Dongsheng,DU Yonggui,PANG Yusong,et al. Speed regulation energy saving method of belt conveyor based on preview control[J]. Industry and Mine Automation,2018,44(6):64-68.
|
[9] |
张文静,曹博文,刘曰锋,等. 基于分数阶滑模自适应神经网络的中速磁浮列车运行控制方法[J]. 中国铁道科学,2022,43(2):152-160.
ZHANG Wenjing,CAO Bowen,LIU Yuefeng,et al. Operation control method for medium-speed maglev trains based on fractional order sliding mode adaptive neural network[J]. China Railway Science,2022,43(2):152-160.
|
[10] |
龚桂荣. 皮带机巡检机器人控制系统设计与研究[D]. 徐州: 中国矿业大学, 2019.
GONG Guirong. Design and research on an inspection robot control system for belt conveyor[D]. Xuzhou: China University of Mining and Technology, 2019.
|
[11] |
彭月,苏芷玄,杨杰,等. 基于PSO−BP−PID单点混合悬浮球控制算法研究[J]. 铁道科学与工程学报,2022,19(6):1511-1520.
PENG Yue,SU Zhixuan,YANG jie,et al. On hybrid single-point magnetic levitation ball control algorithm based on BP-PID[J]. Journal of Railway Science and Engineering,2022,19(6):1511-1520.
|
[12] |
吉建华,苗长云,李现国,等. 基于PSO带式输送机PID控制器参数智能整定的适应度函数设计[J]. 机械工程学报,2022,58(3):1123-1129.
JI Jianhua,MIAO Changyun,LI Xianguo,et al. Design of fitness function for intelligent parameter tuning of PID controller on belt conveyor with PSO[J]. Journal of Mechanical Engineering,2022,58(3):1123-1129.
|
[13] |
王卉. 基于模糊PID理论的带式输送机调速系统设计[J]. 煤矿机械,2019,40(9):14-16.
WANG Hui. Design of speed regulation system for belt conveyor based on fuzzy PID theory[J]. Coal Mine Machinery,2019,40(9):14-16.
|
[14] |
曹江卫,魏霞. 基于RBF−PID控制器的带式输送机自适应调速系统[J]. 煤矿机械,2020,41(5):203-205.
CAO Jiangwei,WEI Xia. Adaptive speed regulation system of belt conveyor based on RBF-PID controller[J]. Coal Mine Machinery,2020,41(5):203-205.
|
[15] |
李航,杜璠,胡晓兵,等. 改进的BP神经网络PID控制器在气体浓度控制中的研究[J]. 四川大学学报(自然科学版),2020,57(6):1103-1109.
LI Hang,DU Fan,HU Xiaobing,et al. Research on improved BP neural network PID controller in gas concentration control[J]. Journal of Sichuan University(Natural Science Edition),2020,57(6):1103-1109.
|
[16] |
杨华伟,帕孜来•马合木提,张毅. PSO−BP−PID算法在双容水箱系统中的应用[J]. 电气传动,2017,47(5):78-80.
YANG Huawei,PAZILAI Mahemuti,ZHANG Yi. Application of PSO-BP-PID algorithm in double tank water system[J]. Electric Drive,2017,47(5):78-80.
|
[17] |
朱馨渝,马平. 基于改进PSO−BP神经网络的PID参数优化方法[J]. 现代电子技术,2022,45(21):127-130.
ZHU Xinyu,MA Ping. PID parameter optimization method based on improved PSO-BP neural network[J]. Modern Electronics Technique,2022,45(21):127-130.
|
[18] |
SRINIVAS M,PATNAIK L M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Transactions on Systems,Man,and Cybernetics,1994,24(4):656-667. doi: 10.1109/21.286385
|
[19] |
GAO Chenyang, GAO Yuelin, LV Shanshan. Improved simulated annealing algorithm for flexible job shop scheduling problems[C]. Chinese Control and Decision Conference, Yinchuan, 2016: 2223-2228.
|
[20] |
WANG Zheng,WANG Bo,LIU Chun,et al. Improved BP neural network algorithm to wind power forecast[J]. The Journal of Engineering,2017(13):940-943.
|
[21] |
郭彩杏,郭晓金,柏林江. 改进遗传模拟退火算法优化BP算法研究[J]. 小型微型计算机系统,2019,40(10):2063-2067.
GUO Caixing,GUO Xiaojin,BAI Linjiang. Rsearch on improved BP algorithm for genetic simulated annealing algorithm[J]. Journal of Chinese Computer Systems,2019,40(10):2063-2067.
|