Citation: | WANG Keping, LIAN Kaihai, YANG Yi, et al. Target detection of the fully mechanized working face based on improved YOLOv4[J]. Journal of Mine Automation,2023,49(2):70-76. doi: 10.13272/j.issn.1671-251x.2022070080 |
[1] |
边文越,陈挺,陈晓怡,等. 世界主要发达国家能源政策研究与启示[J]. 中国科学院院刊,2019,34(4):488-496. doi: 10.16418/j.issn.1000-3045.2019.04.014
BIAN Wenyue,CHEN Ting,CHEN Xiaoyi,et al. Study and enlightenment of energy policies of major developed countries[J]. Bulletin of Chinese Academy of Sciences,2019,34(4):488-496. doi: 10.16418/j.issn.1000-3045.2019.04.014
|
[2] |
葛世荣,郝尚清,张世洪,等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术,2020,48(7):28-46.
GE Shirong,HAO Shangqing,ZHANG Shihong,et al. Status of intelligent coal mining technology and potential key technologies in China[J]. Coal Science and Technology,2020,48(7):28-46.
|
[3] |
王国法,徐亚军,张金虎,等. 煤矿智能化开采新进展[J]. 煤炭科学技术,2021,49(1):1-10. doi: 10.13199/j.cnki.cst.2021.01.001
WANG Guofa,XU Yajun,ZHANG Jinhu,et al. New development of intelligent mining in coal mines[J]. Coal Science and Technology,2021,49(1):1-10. doi: 10.13199/j.cnki.cst.2021.01.001
|
[4] |
张强,张润鑫,刘峻铭,等. 煤矿智能化开采煤岩识别技术综述[J]. 煤炭科学技术,2022,50(2):1-26. doi: 10.13199/j.cnki.cst.2021-1333
ZHANG Qiang,ZHANG Runxin,LIU Junming,et al. Review on coal and rock identification technology for intelligent mining in coal mines[J]. Coal Science and Technology,2022,50(2):1-26. doi: 10.13199/j.cnki.cst.2021-1333
|
[5] |
李首滨. 智能化开采研究进展与发展趋势[J]. 煤炭科学技术,2019,47(10):102-110. doi: 10.13199/j.cnki.cst.2019.10.012
LI Shoubin. Progress and development trend of intelligent mining technology[J]. Coal Science and Technology,2019,47(10):102-110. doi: 10.13199/j.cnki.cst.2019.10.012
|
[6] |
高有进,杨艺,常亚军,等. 综采工作面智能化关键技术现状与展望[J]. 煤炭科学技术,2021,49(8):1-22.
GAO Youjin,YANG Yi,CHANG Yajun,et al. Status and prospect of key technologies of intelligentization of fully-mechanized coal mining face[J]. Coal Science and Technology,2021,49(8):1-22.
|
[7] |
李爽,薛广哲,方新秋,等. 煤矿智能化安全保障体系及关键技术[J]. 煤炭学报,2020,45(6):2320-2330. doi: 10.13225/j.cnki.jccs.zn20.0356
LI Shuang,XUE Guangzhe,FANG Xinqiu,et al. Coal mine intelligent safety system and key technologies[J]. Journal of China Coal Society,2020,45(6):2320-2330. doi: 10.13225/j.cnki.jccs.zn20.0356
|
[8] |
李伟. 深部煤炭资源智能化开采技术现状与发展方向[J]. 煤炭科学技术,2021,49(1):139-145.
LI Wei. Current status and development direction of intelligent mining technology for deep coal resources[J]. Coal Science and Technology,2021,49(1):139-145.
|
[9] |
殷华,虎晓龙. 煤矿无人综采模式及关键技术分析[J]. 工矿自动化,2021,47(增刊2):23-25.
YIN Hua,HU Xiaolong. Analysis of unmanned fully mechanized mining mode of coal mine and its key technologies[J]. Industry and Mine Automation,2021,47(S2):23-25.
|
[10] |
任怀伟,孟祥军,李政,等. 8 m大采高综采工作面智能控制系统关键技术研究[J]. 煤炭科学技术,2017,45(11):37-44.
REN Huaiwei,MENG Xiangjun,LI Zheng,et al. Study on key technology of intelligent control system applied in 8 m large mining height fully-mechanized face[J]. Coal Science and Technology,2017,45(11):37-44.
|
[11] |
刘贝. 矿井人员目标检测与跟踪研究[D]. 西安: 西安科技大学, 2020.
LIU Bei. Research on target detection and tracking of mine pedestrian[D]. Xi'an: Xi'an University of Science and Technology, 2020.
|
[12] |
赵谦. 煤矿井下动态目标视频监测图像处理研究[D]. 西安: 西安科技大学, 2014.
ZHAO Qian. Study on video monitoring and image processing of coal mine dynamic targets[D]. Xi'an: Xi'an University of Science and Technology, 2014.
|
[13] |
程健,王东伟,杨凌凯,等. 一种改进的高斯混合模型煤矸石视频检测方法[J]. 中南大学学报(自然科学版),2018,49(1):118-123. doi: 10.11817/j.issn.1672-7207.2018.01.016
CHENG Jian,WANG Dongwei,YANG Lingkai,et al. An improved Gaussian mixture model for coal gangue video detection[J]. Journal of Central South University(Science and Technology),2018,49(1):118-123. doi: 10.11817/j.issn.1672-7207.2018.01.016
|
[14] |
李伟山,卫晨,王琳. 改进的Faster RCNN煤矿井下行人检测算法[J]. 计算机工程与应用,2019,55(4):200-207. doi: 10.3778/j.issn.1002-8331.1711-0282
LI Weishan,WEI Chen,WANG Lin. Improved faster RCNN approach for pedestrian detection in underground coal mine[J]. Computer Engineering and Applications,2019,55(4):200-207. doi: 10.3778/j.issn.1002-8331.1711-0282
|
[15] |
刘备战,赵洪辉,周李兵. 面向无人驾驶的井下行人检测方法[J]. 工矿自动化,2021,47(9):113-117. doi: 10.13272/j.issn.1671-251x.17830
LIU Beizhan,ZHAO Honghui,ZHOU Libing. Unmanned driving-oriented underground mine pedestrian detection method[J]. Industry and Mine Automation,2021,47(9):113-117. doi: 10.13272/j.issn.1671-251x.17830
|
[16] |
付燕,窦晓熠,叶鸥. 基于YOLO的井下人员速度测量方法研究[J]. 煤炭工程,2022,54(2):160-165.
FU Yan,DOU Xiaoyi,YE Ou. A measurement method of underground workers speed based on YOLO[J]. Coal Engineering,2022,54(2):160-165.
|
[17] |
任志玲,朱彦存.改进CenterNet算法的煤矿皮带运输异物识别研究[J/OL].控制工程:1-8[2022-09-08]. https://doi.org/10.14107/j.cnki.kzgc.20200792.
REN Zhiling,ZHU Yancun.Research on foreign objects recognition of coal mine belt transportation with improved CenterNet algorithm[J/OL].Control Engineering of China:1-8[2022-09-08]. https://doi.org/10.14107/j.cnki.kzgc.20200792.
|
[18] |
王燕平. 基于改进YOLOv3的煤岩界线识别及采高仿人智能控制研究[D]. 太原: 中北大学, 2021.
WANG Yanping. Coal-rock boundary identification based on improved YOLOv3 and research on human-simulating intelligent control of mining height[D]. Taiyuan: North University of China, 2021.
|
[19] |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[EB/OL]. [2022-01-20]. https://doi.org/10.48550/arXiv.2004.10934.
|
[20] |
SRINIVAS A, LIN T Y, PARMAR N, et al. Bottleneck transformers for visual recognition[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 16519-16529.
|
[21] |
SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 2018: 4510-4520.
|