LIU Xin, FU Yuan, LI Chenxin. Research on the application of 5G characteristics in intelligent mine[J]. Journal of Mine Automation,2022,48(10):136-141. DOI: 10.13272/j.issn.1671-251x.2022070032
Citation: LIU Xin, FU Yuan, LI Chenxin. Research on the application of 5G characteristics in intelligent mine[J]. Journal of Mine Automation,2022,48(10):136-141. DOI: 10.13272/j.issn.1671-251x.2022070032

Research on the application of 5G characteristics in intelligent mine

More Information
  • Received Date: July 11, 2022
  • Revised Date: September 28, 2022
  • Available Online: September 08, 2022
  • At present, the 5G construction in intelligent mine mainly focuses on the macro technology development direction, test methods and specific application scenarios of mine 5G. There is a lack of comprehensive analysis of the characteristics of various 5G application scenarios of intelligent mine. In order to solve this problem, the types of 5G application scenarios of intelligent mines are summarized. The communication requirements of the main application scenarios are sorted out. It is pointed out that sensor information backhaul applications have wide coverage requirements. The video information collection and backhaul applications have uplink large bandwidth transmission requirements. The real-time control information interaction applications have downlink low-delay transmission requirements. The automatic driving information collection and backhaul applications need to meet the differentiated transmission requirements of uplink large bandwidth and downlink low delay. According to the environmental characteristics and technical requirements of 5G application in intelligent mines, the overall architecture of mine 5G network with core network + bearer network + access network is proposed. ① The core network makes user plane function (UPF) and multi-access edge computing (MEC) sinking into the mine area to realize independent networking and independent operation of mine 5G. ② The information security module in the smart transport network is used for data security audit monitoring and transmission control to achieve safe isolation of surface and underground data. The network slicing and quality of service (QoS) management module is used to divide and isolate channels for different services, as to realize channel isolation for the coexistence of multiple services and transmission performance guarantee. ③ The access network adopts the mode of base station controller + base station collector + base station + terminal to realize 5G signal partition and on-demand coverage. According to the above architecture, the key technical scheme of 5G for diversified application requirements of intelligent mine is proposed. ① The network slicing technology is used to divide the mine 5G network into sensor slices, video return slices, real-time control slices and remote control slices. Combined with QoS indexes of transmission services, the service data is mapped to different slice resources for transmission,so as to realize the on-demand distribution of 5G network transmission. ② The flexible air interface scheduling mechanism is used to meet the on-demand scheduling of wireless resources. The air interface resource scheduling mode of "resource request-service buffer report resource allocation-service buffer-data transmission resource allocation" is adopted for large-bandwidth services. The mode is used to ensure the uplink transmission bandwidth. The reserved dedicated air interface resources are adopted for low-delay services to ensure the low delay of downlink transmission. ③ When a single frequency band cannot meet the uplink transmission requirement, multiple continuous or discontinuous carriers are aggregated into a larger bandwidth through carrier aggregation technology, effectively supporting the large bandwidth transmission requirement of mine 5G.
  • [1]
    孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7.

    SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7.
    [2]
    郑小磊,梁宏. 煤矿5G通信系统安全技术要求和检验方法[J]. 工矿自动化,2021,47(3):9-13,33.

    ZHENG Xiaolei,LIANG Hong. Safety technical requiremments and inspection methods of coal mine 5G communication system[J]. Industry and Mine Automation,2021,47(3):9-13,33.
    [3]
    张立亚. 基于5G通信的矿山可视化智能监控技术[J]. 煤炭技术,2022,41(1):191-194. DOI: 10.13301/j.cnki.ct.2022.01.045

    ZHANG Liya. Mine visual intelligent monitoring technology based on 5G communication[J]. Coal Technology,2022,41(1):191-194. DOI: 10.13301/j.cnki.ct.2022.01.045
    [4]
    刘雨燕,宋燕. 新一代信息技术助力智慧矿山建设[J]. 煤炭技术,2021,40(2):184-186.

    LIU Yuyan,SONG Yan. New-generation information technology helps construction of smart mines[J]. Coal Technology,2021,40(2):184-186.
    [5]
    顾义东. 5G技术在煤矿掘进工作面运输系统中的应用[J]. 工矿自动化,2022,48(6):64-68. DOI: 10.13272/j.issn.1671-251x.17919

    GU Yidong. Application of 5G technology in coal mine heading face transportation system[J]. Journal of Mine Automation,2022,48(6):64-68. DOI: 10.13272/j.issn.1671-251x.17919
    [6]
    王国法,杜毅博,任怀伟,等. 智能化煤矿顶层设计研究与实践[J]. 煤炭学报,2020,45(6):1909-1924.

    WANG Guofa,DU Yibo,REN Huaiwei,et al. Top level design and practice of smart coal mines[J]. Journal of China Coal Society,2020,45(6):1909-1924.
    [7]
    张帆,葛世荣,李闯. 智慧矿山数字孪生技术研究综述[J]. 煤炭科学技术,2020,48(7):168-176.

    ZHANG Fan,GE Shirong,LI Chuang. Research summary on digital twin technology for smart mines[J]. Coal Science and Technology,2020,48(7):168-176.
    [8]
    张蓄金,乌岚. 多传感器信息融合技术在煤自燃安全预警系统中的应用[J]. 煤炭技术,2022,41(6):156-158. DOI: 10.13301/j.cnki.ct.2022.06.037

    ZHANG Xujin,WU Lan. Application of multi-sensor information fusion technology in coal spontaneous combustion safety early warning system[J]. Coal Technology,2022,41(6):156-158. DOI: 10.13301/j.cnki.ct.2022.06.037
    [9]
    胡亚辉,赵国瑞,吴群英. 面向煤矿智能化的5G关键技术研究[J]. 煤炭科学技术,2022,50(2):223-230. DOI: 10.13199/j.cnki.cst.2020-1093

    HU Yahui,ZHAO Guorui,WU Qunying. Research on 5G key technologies in intelligent coal mining[J]. Coal Science and Technology,2022,50(2):223-230. DOI: 10.13199/j.cnki.cst.2020-1093
    [10]
    冯登国,徐静,兰晓. 5G移动通信网络安全研究[J]. 软件学报,2018,29(6):1813-1825.

    FENG Dengguo,XU Jing,LAN Xiao. Study on 5G mobile communication network security[J]. Journal of Software,2018,29(6):1813-1825.
    [11]
    张立亚. 基于图像识别的煤矿井下安全管控技术[J]. 煤矿安全,2021,52(2):165-168. DOI: 10.13347/j.cnki.mkaq.2021.02.032

    ZHANG Liya. Safety control technology of coal mine based on image recognition[J]. Safety in Coal Mines,2021,52(2):165-168. DOI: 10.13347/j.cnki.mkaq.2021.02.032
    [12]
    王国法,赵国瑞,胡亚辉. 5G技术在煤矿智能化中的应用展望[J]. 煤炭学报,2020,45(1):16-23. DOI: 10.13225/j.cnki.jccs.YG19.1515

    WANG Guofa,ZHAO Guorui,HU Yahui. Application prospect of 5G technology in coal mine intelligence[J]. Journal of China Coal Society,2020,45(1):16-23. DOI: 10.13225/j.cnki.jccs.YG19.1515
    [13]
    霍振龙,肖松,孟玮,等. 矿井5G无线通信系统关键技术及装备研发与示范应用[J]. 智能矿山,2022,3(4):55-60.

    HUO Zhenlong,XIAO Song,MENG Wei,et al. Key echnology research,equipment development and demonstration application of mine 5G wireless communication system[J]. Journal of Intelligent Mine,2022,3(4):55-60.
    [14]
    葛世荣,胡而已,裴文良. 煤矿机器人体系及关键技术[J]. 煤炭学报,2020,45(1):455-463. DOI: 10.13225/j.cnki.jccs.YG19.1478

    GE Shirong,HU Eryi,PEI Wenliang. Classification system and key technology of coal mine robot[J]. Journal of China Coal Society,2020,45(1):455-463. DOI: 10.13225/j.cnki.jccs.YG19.1478
    [15]
    李晨鑫,张立亚. 煤矿井下网联式自动驾驶技术研究[J]. 工矿自动化,2022,48(6):49-55. DOI: 10.13272/j.issn.1671-251x.17930

    LI Chenxin,ZHANG Liya. Research on the network connected automatic driving technology in underground coal mine[J]. Journal of Mine Automation,2022,48(6):49-55. DOI: 10.13272/j.issn.1671-251x.17930
    [16]
    赵远,吉庆,王腾. 煤矿智能无轨辅助运输技术现状与展望[J]. 煤炭科学技术,2021,49(12):209-216. DOI: 10.13199/j.cnki.cst.2021.12.026

    ZHAO Yuan,JI Qing,WANG Teng. Current status and prospects of intelligent trackless auxiliary transportation technology in coal mines[J]. Coal Science and Technology,2021,49(12):209-216. DOI: 10.13199/j.cnki.cst.2021.12.026
  • Related Articles

    [1]YANG Jun. Aggregation enhanced coal-gangue video recognition model based on long and short-term storage[J]. Journal of Mine Automation, 2023, 49(3): 39-44, 62. DOI: 10.13272/j.issn.1671-251x.18058
    [2]YAN Shuailing, ZHANG Lei. Multipath QoS routing algorithm based on Ad Hoc network in mine environment[J]. Journal of Mine Automation, 2021, 47(5): 83-87. DOI: 10.13272/j.issn.1671-251x.2020110026
    [3]MA Xiaodong, SONG Bing, ZHANG Shubi, LIU Xin. Real time cycle slip detection of Beidou single frequency carrier phase based on Kalman filtering[J]. Journal of Mine Automation, 2016, 42(4): 58-61. DOI: 10.13272/j.issn.1671-251x.2016.04.014
    [4]ZHENG Zheng, YAN Fei, ZOU Jin. Optimization research on carrier phase-shifting modulation method of cascade multi-level inverter[J]. Journal of Mine Automation, 2014, 40(1): 75-79. DOI: 10.13272/j.issn.1671-251x.2014.01.020
    [5]ZHU Xiao-fang, YANG Li-dong, LI Yan-hui. PLC Carrier Electronic Control System of Electrical Traction Shearer[J]. Journal of Mine Automation, 2009, 35(5): 95-96.
    [6]Feng Jin, RONG Xiang. Application of Pwer Line Carrier Communication Technology in Underground Power Monitoring System[J]. Journal of Mine Automation, 2008, 34(3): 104-106.
    [7]LIU Run-hua, WANG Chun-sheng, HOU Ju-lin, GAO Bao-wei. The Principle of Automatic Meter Reading System of Coal Mine Underground by Use of Power Line Carrier and Its Applicatio[J]. Journal of Mine Automation, 2007, 33(2): 39-40.
    [8]SONG Jun~, GAO Shou-le~. The QoS Design of Embedded Network Outstation Used in Underground[J]. Journal of Mine Automation, 2005, 31(2): 29-32.
    [9]RUI Guo-hong, QIU Jin-bo, HAN Bao-mi. Model ZJF-1 Power Cable Carrier Equipment and Its Application in Shear[J]. Journal of Mine Automation, 2001, 27(5): 37-39.
    [10]ZHONG Dao-chang. Multi channel Signal Telemetry System for Coal Mines with Carrier Wave Transmitted by Telephone cable[J]. Journal of Mine Automation, 2000, 26(1): 20-21.
  • Cited by

    Periodical cited type(14)

    1. 刘通,但德东,陈大明. 5G+智慧矿山应用中的高可靠性保障. 邮电设计技术. 2025(02): 83-87 .
    2. 蔡勇,王晓彬,姚梦珂,戴鹏. 5G网络能力提升方案研究与应用. 无线互联科技. 2024(09): 106-110 .
    3. 张绍斌. 矿用5G综合基站设计及应用. 工矿自动化. 2024(S1): 57-60 . 本站查看
    4. 张科学,张立亚,李晨鑫,魏春贤,高鹏. 基于5G的电液控设备邻架控制方法. 工矿自动化. 2024(S1): 165-168 . 本站查看
    5. 黎一冰,韩文成,何义华,谢晓斌. 露天矿山5G立体覆盖波束的场景化研究与实践. 中国矿业. 2024(S2): 139-144 .
    6. 黎一冰,韩文成,王仁福,卿启林,车长路. 露天矿山5G全连接智能采矿无线网络设计及应用. 中国矿业. 2024(S2): 127-132 .
    7. 邢震,韩安,陈晓晶,陈海舰,沈毅. 基于工业互联网的智能矿山灾害数字孪生研究. 工矿自动化. 2023(02): 23-30+55 . 本站查看
    8. 牛克洪,牛天勇,刘名宇. 基于创新趋势研判方法的煤炭产业发展走势研究. 中国煤炭. 2023(03): 11-15 .
    9. 李晨鑫. 矿用5G通信演进技术研究. 工矿自动化. 2023(03): 6-12 . 本站查看
    10. 武熙,李珂,孟庆灵,赵佳伟. 矿用带式输送机头部智能清扫器研究与设计. 金属矿山. 2023(08): 253-259 .
    11. 李新,葛祥吉,刘更庆,李仕宾. 基于5G+技术的智慧化矿山建设研究. 内蒙古煤炭经济. 2023(13): 127-129 .
    12. 杨志华,李娜,高天. 井工矿5G专网无线覆盖方案研究. 邮电设计技术. 2023(09): 10-14 .
    13. 王耀. 基于5G工业互联网的井工煤矿信息化技术研究. 工矿自动化. 2023(S1): 29-31 . 本站查看
    14. 李强,钟仕军,赖亚寒,宋仕斌. 基于多频融合5G专网的智慧矿山安全管理研究. 现代计算机. 2023(21): 30-35 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (599) PDF downloads (76) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return