Citation: | SHE Xiaojiang, LIU Jiang, WANG Lanhao. Application status and prospect of AI video image analysis in intelligent coal preparation plant[J]. Journal of Mine Automation,2022,48(11):45-53, 109. doi: 10.13272/j.issn.1671-251x.2022060092 |
[1] |
张家富. 选煤厂智能化技术和设备现状分析[J]. 煤炭加工与综合利用,2022(1):88-92. doi: 10.16200/j.cnki.11-2627/td.2022.01.017
ZHANG Jiafu. Present situation analysis of intelligent technology and equipment in coal preparation plant[J]. Coal Processing & Comprehensive Utilization,2022(1):88-92. doi: 10.16200/j.cnki.11-2627/td.2022.01.017
|
[2] |
匡亚莉. 智能化选煤厂建设的内涵与框架[J]. 选煤技术,2018,46(1):85-91. doi: 10.16447/j.cnki.cpt.2018.01.022
KUANG Yali. The intension and framework for the construction of intelligent coal preparation plant[J]. Coal Preparation Technology,2018,46(1):85-91. doi: 10.16447/j.cnki.cpt.2018.01.022
|
[3] |
赵亮,孙魁元,韩宝虎,等. 基于人工智能视频分析的选煤厂安全管理研究[J]. 中国安全科学学报,2021,31(增刊1):19-23. doi: 10.16265/j.cnki.issn1003-3033.2021.S1.004
ZHAO Liang,SUN Kuiyuan,HAN Baohu,et al. Research on safety management of coal preparation plants based on artificial intelligence video analysis[J]. China Safety Science Journal,2021,31(S1):19-23. doi: 10.16265/j.cnki.issn1003-3033.2021.S1.004
|
[4] |
杨景峰. 基于AI视频识别技术的井下规范操作监控系统设计[J]. 陕西煤炭,2021,40(1):4-8,46. doi: 10.3969/j.issn.1671-749X.2021.01.003
YANG Jingfeng. Design of underground standard operation monitoring system based on AI video recognition technology[J]. Shaanxi Coal,2021,40(1):4-8,46. doi: 10.3969/j.issn.1671-749X.2021.01.003
|
[5] |
WU Yaqin,CHEN Mengmeng,WANG Kai,et al. A dynamic information platform for underground coal mine safety based on Internet of things[J]. Safety Science,2019,113:9-18. doi: 10.1016/j.ssci.2018.11.003
|
[6] |
CHEN Hao, ZI Xinli, ZHANG Qing, et al. Computer big data technology in Internet network communication video monitoring of coal preparation plant[C]. 2nd International Conference on Applied Physics and Computing(ICAPC), Ottawa, 2021: 1-6.
|
[7] |
MA Long, CHENG Qing. Design and application of intelligent monitoring and identification system in coal mine[C]. 3rd International Conference on Green Energy and Sustainable Development, Shenyang, 2020: 1027-1031.
|
[8] |
ZHANG Kanghui,WANG Weidong,LYU Ziqi,et al. Computer vision detection of foreign objects in coal processing using attention CNN[J]. Engineering Applications of Artificial Intelligence,2021,102:116-128.
|
[9] |
ZHAO Xiaohu, LI Xiao, YIN Liangfei, et al. Foreign body recognition for coal mine conveyor based on improved PCANet[C]. 11th International Conference on Wireless Communications and Signal Processing (WCSP), Xi'an, 2019: 1-6.
|
[10] |
WANG Yuanbin,WANG Yujiang,DANG Langfei. Video detection of foreign objects on the surface of belt conveyor underground coal mine based on improved SSD[J]. Journal of Ambient Intelligence and Humanized Computing,2020:1-10. DOI: 10.1007/s12652-020-02495-w.
|
[11] |
高小强. 智能巡检机器人视频监测皮带异物自动识别报警技术研究[J]. 电子技术与软件工程,2016(11):158-160.
GAO Xiaoqiang. Research on automatic recognition and alarm technology of belt foreign matters monitored by intelligent inspection robot[J]. Electronic Technology & Software Engineering,2016(11):158-160.
|
[12] |
郭亮. 基于视频图像处理的煤与矸石分选方法的研究[D]. 青岛: 山东科技大学, 2014.
GUO Liang. Study of the coal and gangue sorting method based on the video image processing[D]. Qingdao: Shandong University of Science and Technology, 2014.
|
[13] |
丁泽海,薛斌,窦东阳. 图像处理在煤矸石分选系统中的应用[J]. 煤矿机械,2017,38(3):173-175.
DING Zehai,XUE Bin,DOU Dongyang. Application of image processing in coal and gangue separation system[J]. Coal Mine Machinery,2017,38(3):173-175.
|
[14] |
吴开兴,宋剑. 基于灰度共生矩阵的煤与矸石自动识别研究[J]. 煤炭工程,2016,48(2):98-101.
WU Kaixing,SONG Jian. Automatic coal-gangue identification based on gray level co-occurrence matrix[J]. Coal Engineering,2016,48(2):98-101.
|
[15] |
张勇. 基于视频处理的煤矸石识别研究[D]. 徐州: 中国矿业大学, 2018.
ZHANG Yong. Research on gangue identification based on video processing[D]. Xuzhou: China University of Mining and Technology, 2018.
|
[16] |
徐志强,吕子奇,王卫东,等. 煤矸智能分选的机器视觉识别方法与优化[J]. 煤炭学报,2020,45(6):2207-2216. doi: 10.13225/j.cnki.jccs.zn20.0307
XU Zhiqiang,LYU Ziqi,WANG Weidong,et al. Machine vision recognition method and optimization for intelligent separation of coal and gangue[J]. Journal of China Coal Society,2020,45(6):2207-2216. doi: 10.13225/j.cnki.jccs.zn20.0307
|
[17] |
LI Dongjun,ZHANG Zhenxin,XU Zhihua,et al. An image-based hierarchical deep learning framework for coal and gangue detection[J]. IEEE Access,2019:7. DOI: 10.1109/access.2019.2961075.
|
[18] |
MORAR S H,HARRIS M C,BRADSHAW D J. The use of machine vision to predict flotation performance[J]. Minerals Engineering,2012(36/37/38):31-36.
|
[19] |
MASSINAEI M,JAHEDSARAVANI A,MOHSENI H. Recognition of process conditions of a coal column flotation circuit using computer vision and machine learning[J]. International Journal of Coal Preparation and Utilization,2022,42(7):2204-2218. doi: 10.1080/19392699.2020.1823843
|
[20] |
唐朝晖,刘金平,陈青,等. 基于预测模型的浮选过程pH值控制[J]. 控制理论与应用,2013,30(7):885-890. doi: 10.7641/CTA.2013.12042
TANG Zhaohui,LIU Jinping,CHEN Qing,et al. pH control in flotation process based on prediction model[J]. Control Theory & Applications,2013,30(7):885-890. doi: 10.7641/CTA.2013.12042
|
[21] |
阳春华,任会峰,桂卫华,等. 基于机器视觉的矿物浮选pH软测量方法[J]. 计算机工程与应用,2011,47(1):228-230,248. doi: 10.3778/j.issn.1002-8331.2011.01.065
YANG Chunhua,REN Huifeng,GUI Weihua,et al. Machine-vision-based soft sensor of pH for flotation process[J]. Computer Engineering and Applications,2011,47(1):228-230,248. doi: 10.3778/j.issn.1002-8331.2011.01.065
|
[22] |
ZHU Aichun, HUA Gang, WANG Yongxing. The research on the detection method of belt deviation by video in coal mine[C]. International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), Jilin, 2011: 430-433.
|
[23] |
滕悦,徐少川,张庆东. 基于图像处理技术的皮带跑偏监测系统设计[J]. 烧结球团,2020,45(2):10-14. doi: 10.13403/j.sjqt.2020.02.018
TENG Yue,XU Shaochuan,ZHANG Qingdong. Design of monitoring system for belt deviation based on image processing technology[J]. Sintering and Pelletizing,2020,45(2):10-14. doi: 10.13403/j.sjqt.2020.02.018
|
[24] |
田勇. 机器视觉技术在选煤厂运输机溜槽堵塞检测中的应用[J]. 山西能源学院学报,2021,34(4):5-6,9. doi: 10.3969/j.issn.1008-8881.2021.04.002
TIAN Yong. Application of machine vision technology in detection of transport chute blockage in coal preparation plant[J]. Journal of Shanxi Institute of Energy,2021,34(4):5-6,9. doi: 10.3969/j.issn.1008-8881.2021.04.002
|
[25] |
GB/T17608—2006 煤炭产品品种和等级划分[S].
GB/T17608—2006 Coal product variety and grade division[S].
|
[26] |
张雷, 孙颖, 田志辉. 基于机器视觉的物料粒度在线检测方法: 201811478128.8[P]. 2019-04-09.
ZHANG Lei, SUN Ying, TIAN Zhihui. Online detection method of material granularity based on machine vision: 201811478128.8[P]. 2019-04-09.
|
[27] |
郭福彧. 基于机器视觉的细碎矿石粒度分布在线检测技术研究[D]. 沈阳: 东北大学, 2015.
GUO Fuyu. Research on the technology of the fine crushing ore particle size distribution on-line detection based on machine vision[D]. Shenyang: Northeastern University, 2015.
|
[28] |
董珂. 基于机器视觉的矿石粒度检测技术研究[D]. 北京: 北京工业大学, 2013.
DONG Ke. Research on ore granularity detection technology based on machine vision[D]. Beijing: Beijing University of Technology, 2013.
|
[29] |
张宗华. 选煤厂人员智能视频监控系统设计[J]. 工矿自动化,2013,39(4):76-79. doi: 10.7526/j.issn.1671-251X.2013.04.020
ZHANG Zonghua. Design of intelligent video monitoring system of personnel of coal preparation plant[J]. Industry and Mine Automation,2013,39(4):76-79. doi: 10.7526/j.issn.1671-251X.2013.04.020
|
[30] |
朱煜,赵江坤,王逸宁,等. 基于深度学习的人体行为识别算法综述[J]. 自动化学报,2016,42(6):848-857. doi: 10.16383/j.aas.2016.c150710
ZHU Yu,ZHAO Jiangkun,WANG Yining,et al. A review of human action recognition based on deep learning[J]. Acta Automatica Sinica,2016,42(6):848-857. doi: 10.16383/j.aas.2016.c150710
|
[31] |
刘忠育. 基于深度学习的矿工不安全行为识别方法研究[D]. 徐州: 中国矿业大学, 2021.
LIU Zhongyu. Research on recognition methods of miners' unsafe behavior based on deep learning[D]. Xuzhou: China University of Mining and Technology, 2021.
|
[32] |
冯小琴. 多场景视频智能处理系统及调度管理算法研究[D]. 北京: 北京工业大学, 2019.
FENG Xiaoqin. Research on multi-scene video intelligent processing system and scheduling management algorithm[D]. Beijing: Beijing University of Technology, 2019.
|
[33] |
周晨晖. 基于深度学习的煤矿复杂场景人员检测与统计分析方法研究[D]. 徐州: 中国矿业大学, 2019.
ZHOU Chenhui. Research on personnel detection and statistical analysis in coal mine complex scenes based on deep learning[D]. Xuzhou: China University of Mining and Technology, 2019.
|
[34] |
张翼翔,林松,李雪. 基于CenterNet-GhostNet的选煤厂危险区域人员检测[J]. 工矿自动化,2022,48(4):66-71. doi: 10.13272/j.issn.1671-251x.2021080058
ZHANG Yixiang,LIN Song,LI Xue. Personnel detection in dangerous area of coal preparation plant based on CenterNet-GhostNet[J]. Journal of Mine Automation,2022,48(4):66-71. doi: 10.13272/j.issn.1671-251x.2021080058
|
[35] |
LI Guohui,WU Jieping,LUO Zhiwen,et al. Vision-based measurement of dust concentration by image transmission[J]. IEEE Transactions on Instrumentation and Measurement,2019,68(10):3942-3949. doi: 10.1109/TIM.2018.2883999
|
[36] |
WANG Zheng,ZHENG Xu,LI Dongyan,et al. A VGGNet-like approach for classifying and segmenting coal dust particles with overlapping regions[J]. Computers in Industry,2021,132. DOI: 10.1016/J.COMPIND.2021.103506.
|
[37] |
宋敬海. 基于嵌入式系统和机器视觉的火灾检测系统研究[D]. 镇江: 江苏科技大学, 2008.
SONG Jinghai. Research on fire detection system based on embedded system and machine vision[D]. Zhenjiang: Jiangsu University of Science and Technology, 2008.
|
[38] |
CUI Haoyang, XU Yongpeng, ZENG Jundong, et al. The methods in infrared thermal imaging diagnosis technology of power equipment[C]. IEEE 4th International Conference on Electronics Information and Emergency Communication, Beijing, 2013: 246-251.
|
[39] |
JADIN M S, GHAZALI K H. Gas leakage detection using thermal imaging technique[C]. The 16th International Conference on Computer Modelling and Simulation, Cambridge, 2014: 302-306.
|
[40] |
NARKHEDE P,WALAMBE R,MANDAOKAR S,et al. Gas detection and identification using multimodal artificial intelligence based sensor fusion[J]. Applied System Innovation,2021,4(1):1-14.
|