HONG Weibin, SHENG Wu. Analysis of influencing factors of coal mine water inrush accidents based on DEMATEL-ISM-BN[J]. Journal of Mine Automation,2022,48(12):116-122. DOI: 10.13272/j.issn.1671-251x.2022060079
Citation: HONG Weibin, SHENG Wu. Analysis of influencing factors of coal mine water inrush accidents based on DEMATEL-ISM-BN[J]. Journal of Mine Automation,2022,48(12):116-122. DOI: 10.13272/j.issn.1671-251x.2022060079

Analysis of influencing factors of coal mine water inrush accidents based on DEMATEL-ISM-BN

More Information
  • Received Date: June 20, 2022
  • Revised Date: December 07, 2022
  • Available Online: August 14, 2022
  • The water inrush accident is the third largest coal mine accident after the gas accident and the roof accident. The analysis and exploration of the causes of the water inrush accident and the intrinsic relationship between the various factors can effectively realize the control and containment of the water inrush accident. The existing coal mine water inrush accident research mostly aims at a certain area or a certain aspect. There is a lack of in-depth research on the complex causal relationship among the influence factors and the influence degree of each factor on the accident. In order to solve this problem, decision making trial and evaluation laboratory (DEMATEL) and interpretative structural modeling method (ISM) are used to analyze the influencing factors of coal mine water inrush accidents. The multi-level hierarchical structure model is constructed, which is mapped into the Bayesian network (BN) model. The DEMATEL-ISM-BN model is obtained. Based on the data-driven theory, typical accident cases are studied. There are 18 influencing factors inducing coal mine water inrush accidents determined. Based on expert scoring results, DEMATEL analysis is carried out. The influence degree, influenced degree, cause degree and centrality of each factor are calculated. The reachability matrix of ISM is calculated according to the DEMATEL analysis results. The multi-level hierarchical structure model is constructed. The BN model is constructed based on the real case data of coal mine water inrush accidents. The causal chain analysis is carried out by using the fault diagnosis function of the BN model. The results of the DEMATEL analysis show that the main factors affecting the occurrence of coal mine water inrush accidents are the lack of understanding of water disasters and inadequate hydrogeological detection. The other factors include confusion of safety management and weak technical means. ISM analysis results show that the "three violations" behavior and water source threat are at the top of the multi-level hierarchical structure model of water inrush accidents. These are the direct factors inducing water inrush accidents. The BN analysis results show that the most likely cause chain is inadequate hydrogeological detection → water source threat → water inrush accidents. To effectively curb the occurrence of coal mine water inrush accidents, it is suggested to improve the staff awareness of water disasters, strictly carry out hydrogeological exploration, and fundamentally eliminate the illegal behavior of production personnel.
  • [1]
    张培森,李复兴,朱慧聪,等. 2008—2020年煤矿事故统计分析及防范对策[J]. 矿业安全与环保,2022,49(1):128-134. DOI: 10.19835/j.issn.1008-4495.2022.01.022

    ZHANG Peisen,LI Fuxing,ZHU Huicong,et al. Statistical analysis and prevention countermeasures of coal mine accidents from 2008 to 2020[J]. Mining Safety & Environmental Protection,2022,49(1):128-134. DOI: 10.19835/j.issn.1008-4495.2022.01.022
    [2]
    张世龙,张民波,朱仁豪,等. 近5年我国煤矿事故特征分析及防治对策[J]. 煤炭与化工,2021,44(8):101-106,109. DOI: 10.19286/j.cnki.cci.2021.08.033

    ZHANG Shilong,ZHANG Minbo,ZHU Renhao,et al. Analysis of the characteristics of China's mine accidents in the past five years and countermeasures for prevention and control[J]. Coal and Chemical Industry,2021,44(8):101-106,109. DOI: 10.19286/j.cnki.cci.2021.08.033
    [3]
    傅贵,郑志勇. 煤矿透水事故不安全动作原因分类研究[J]. 煤矿安全,2016,47(7):244-246,250. DOI: 10.13347/j.cnki.mkaq.2016.07.067

    FU Gui,ZHENG Zhiyong. Research on reasons classification for unsafe acts in coal mine water accidents[J]. Safety in Coal Mines,2016,47(7):244-246,250. DOI: 10.13347/j.cnki.mkaq.2016.07.067
    [4]
    赵飞,许娜. 基于FAST法的透水事故救援产品模块化设计[J]. 包装工程,2020,41(16):141-146. DOI: 10.19554/j.cnki.1001-3563.2020.16.021

    ZHAO Fei,XU Na. Modular design of water-permeable accident rescue products based on the FAST[J]. Packaging Engineering,2020,41(16):141-146. DOI: 10.19554/j.cnki.1001-3563.2020.16.021
    [5]
    周峰雷,李新春,裴丽莎. 基于遗传算法−BP神经网络的煤矿透水事故涌水量预测模型研究[J]. 煤炭技术,2015,34(11):169-170. DOI: 10.13301/j.cnki.ct.2015.11.063

    ZHOU Fenglei,LI Xinchun,PEI Lisha. Prediction model of coal mine water inflow based on GA-BP neural network[J]. Coal Technology,2015,34(11):169-170. DOI: 10.13301/j.cnki.ct.2015.11.063
    [6]
    李满如. 事故树和层次分析法在煤矿透水事故分析与评价中的应用[J]. 煤炭与化工,2020,43(5):60-62,66. DOI: 10.19286/j.cnki.cci.2020.05.016

    LI Manru. Application of incident tree and hierarchical analysis method in the analysis and evaluation of mine permeability accidents[J]. Coal and Chemical Industry,2020,43(5):60-62,66. DOI: 10.19286/j.cnki.cci.2020.05.016
    [7]
    张国琴. FTA和AHP综合分析在煤矿透水事故分析中的应用[J]. 现代矿业,2020,36(2):239-241. DOI: 10.3969/j.issn.1674-6082.2020.02.074

    ZHANG Guoqin. Application of comprehensive analysis of FTA and AHP in coal mine permeability accident analysis[J]. Modern Mining,2020,36(2):239-241. DOI: 10.3969/j.issn.1674-6082.2020.02.074
    [8]
    陈伟,杨主张,熊威,等. 装配式建筑工程施工安全风险传导DEMATEL−BN模型[J]. 中国安全科学学报,2020,30(7):1-6. DOI: 10.16265/j.cnki.issn1003-3033.2020.07.001

    CHEN Wei,YANG Zhuzhang,XIONG Wei,et al. Research on DEMATEL-BN model of construction risk transmission for prefabricated building[J]. China Safety Science Journal,2020,30(7):1-6. DOI: 10.16265/j.cnki.issn1003-3033.2020.07.001
    [9]
    王文和,朱正祥,米红甫,等. 基于DEMATEL−ISM的城市地下综合管廊火灾事故影响因素研究[J]. 安全与环境学报,2020,20(3):793-800. DOI: 10.13637/j.issn.1009-6094.2019.0092

    WANG Wenhe,ZHU Zhengxiang,MI Hongfu,et al. Pursuit and determination of the influential factors of the urban underground integrated pipe gallery fire accidents based on the DEMATEL-ISM[J]. Journal of Safety and Environment,2020,20(3):793-800. DOI: 10.13637/j.issn.1009-6094.2019.0092
    [10]
    贾宝惠,史思杨,王玉鑫. 基于改进DEMATEL−ISM模型的机轮刹车系统风险因素分析[J]. 安全与环境学报,2021,21(2):506-512. DOI: 10.13637/j.issn.1009-6094.2019.0802

    JIA Baohui,SHI Siyang,WANG Yuxin. Risk factors analysis of the wheel brake system based on the improved DEMATEL-ISM[J]. Journal of Safety and Environment,2021,21(2):506-512. DOI: 10.13637/j.issn.1009-6094.2019.0802
    [11]
    李广利,严一知,刘文琦,等. 基于DEMATEL−ISM的矿工不安全情绪形成因子研究[J]. 中国安全科学学报,2021,31(7):30-37. DOI: 10.16265/j.cnki.issn1003-3033.2021.07.005

    LI Guangli,YAN Yizhi,LIU Wenqi,et al. Research on formation factors of miners' unsafe emotions based on DEMATEL-ISM[J]. China Safety Science Journal,2021,31(7):30-37. DOI: 10.16265/j.cnki.issn1003-3033.2021.07.005
    [12]
    申霞,夏越,杨校毅,等. 集成DEMATEL/ISM的煤矿工人违章行为影响因素研究[J]. 中国安全科学学报,2015,25(9):145-151. DOI: 10.16265/j.cnki.issn1003-3033.2015.09.024

    SHEN Xia,XIA Yue,YANG Xiaoyi,et al. DEMATEL and ISM-based study on factors influencing miners' violation behavior[J]. China Safety Science Journal,2015,25(9):145-151. DOI: 10.16265/j.cnki.issn1003-3033.2015.09.024
    [13]
    KASHYAP A,KUMAR C,KUMAR V,et al. A DEMATEL model for identifying the impediments to the implementation of circularity in the aluminum industry[J]. Decision Analytics Journal,2022:5. DOI: 10.1016/j.dajour.2022.100134.
    [14]
    LIN Feng,WU Ping,XU Yidong. Investigation of factors influencing the construction safety of high-speed railway stations based on DEMATEL and ISM[J]. Advances in Civil Engineering,2021:2021. DOI: 10.1155/2021/9954018.
    [15]
    MULHERN R,ROOSTAEI J,SCHWETSCHENAU S,et al. A new approach to a legacy concern:evaluating machine-learned Bayesian networks to predict childhood lead exposure risk from community water systems[J]. Environmental Research,2022:204. DOI: 10.1016/j.envres.2021.112146.
    [16]
    于秀珍,牟瑞芳. 集成DEMATEL与ISM的铁路行车事故影响因素分析[J]. 安全与环境学报,2022,22(5):2334-2341. DOI: 10.13637/j.issn.1009-6094.2021.0659

    YU Xiuzhen,MOU Ruifang. Research on factors influencing railway accidents based on DEMATEL and ISM integrated method[J]. Journal of Safety and Environment,2022,22(5):2334-2341. DOI: 10.13637/j.issn.1009-6094.2021.0659
    [17]
    刘延威,温忠党. 煤矿透水事故采取的策略分析[J]. 山东工业技术,2015(6):81. DOI: 10.16640/j.cnki.37-1222/t.2015.06.049

    LIU Yanwei,WEN Zhongdang. Analysis of the strategy adopted in coal mine flooding accident[J]. Shandong Industrial Technology,2015(6):81. DOI: 10.16640/j.cnki.37-1222/t.2015.06.049
    [18]
    李文平. 试析煤矿地质与防治水工作结合的必要性[J]. 内蒙古煤炭经济,2020(8):183-184. DOI: 10.13487/j.cnki.imce.017102

    LI Wenping. Analysis on the necessity of combining coal mine geology with water control[J]. Inner Mongolia Coal Economy,2020(8):183-184. DOI: 10.13487/j.cnki.imce.017102
    [19]
    郭小兵. 浅谈老空水害事故原因及防范管理对策[J]. 能源与节能,2018(10):41-42. DOI: 10.3969/j.issn.2095-0802.2018.10.019

    GUO Xiaobing. On the causes and countermeasures of the water damage accidents in old goaf[J]. Energy and Energy Conservation,2018(10):41-42. DOI: 10.3969/j.issn.2095-0802.2018.10.019
    [20]
    陈亚敏. 煤矿透水的原因及其防范对策研究[J]. 化工管理,2016(3):79. DOI: 10.3969/j.issn.1008-4800.2016.03.063

    CHEN Yamin. Study on the causes of coal mine water permeability and its prevention countermeasures[J]. Chemical Enterprise Management,2016(3):79. DOI: 10.3969/j.issn.1008-4800.2016.03.063
    [21]
    张宁,盛武. 基于贝叶斯网络的煤矿瓦斯爆炸事故致因分析[J]. 工矿自动化,2019,45(7):53-58. DOI: 10.13272/j.issn.1671-251x.2019010049

    ZHANG Ning,SHENG Wu. Causes analysis of coal mine gas explosion accidents based on Bayesian network[J]. Industry and Mine Automation,2019,45(7):53-58. DOI: 10.13272/j.issn.1671-251x.2019010049
  • Related Articles

    [1]Research on intelligent control of slime flotation based on WOA-GRU identification model and MPC controller[J]. Journal of Mine Automation.
    [2]WEI Kai, WANG Ranfeng, WANG Jun, HAN Jie, ZHANG Qian. Dynamic feature extraction for flotation froth based on centroid-convex hull-adaptive clustering[J]. Journal of Mine Automation, 2024, 50(8): 151-160. DOI: 10.13272/j.issn.1671-251x.18182
    [3]HAN Yu, WANG Lanhao, LIU Qinshan, GUI Xiahui. Intelligent detection model of flotation tailings ash based on CNN-BP[J]. Journal of Mine Automation, 2023, 49(3): 100-106. DOI: 10.13272/j.issn.1671-251x.2022100019
    [4]GUO Zhongtian, WANG Ranfeng, FU Xiang, WEI Kai, WANG Yulong. Method for extracting froth velocity of coal slime flotation based on image feature matching[J]. Journal of Mine Automation, 2022, 48(10): 34-39, 54. DOI: 10.13272/j.issn.1671-251x.17991
    [5]CAO Wenyan, WANG Ranfeng, FAN Minqiang, FU Xiang, WANG Yulong. Coal slime flotation foam image classification method based on semi-supervised clustering[J]. Journal of Mine Automation, 2019, 45(7): 38-42. DOI: 10.13272/j.issn.1671-251x.17437
    [6]WU Fusheng. Experimental study on composite gas indexes optimization for coal spontaneous combustion predictio[J]. Journal of Mine Automation, 2018, 44(7): 61-65. DOI: 10.13272/j.issn.1671-251x.17341
    [7]MAO Dong-mei. Reform of automatic flotation control system in Datun Coal Preparation Plant[J]. Journal of Mine Automation, 2013, 39(5): 103-105.
    [8]WANG Ying, ZHANG Ke. Analysis and comparison of common liquid level detecting equipments in flotation process[J]. Journal of Mine Automation, 2013, 39(1): 55-58.
    [9]ZHANG Lin-hai, ZHAO Yu-jun, LV Wen-ge. Research of PID Setting of Kinds of Performances Index Based on Competitive Algorithm[J]. Journal of Mine Automation, 2009, 35(11): 62-65.
    [10]ZHANG Yi-kui, CHEN Ling, WANG Fei. Flotation Control System Based on Pattern Recognitio[J]. Journal of Mine Automation, 2002, 28(1): 14-16.
  • Cited by

    Periodical cited type(8)

    1. 谢才秀,张永菊,龙涛,陈鹏,石开仪,王市委. 不同实验设计方法在高灰分煤泥浮选优化实验中的应用. 矿产综合利用. 2021(01): 72-76+56 .
    2. 陈鹏,李子文,石开仪,张谌虎,王市委,孙维旭. 基于司盘80改性的不黏煤煤泥浮选条件探索. 矿业研究与开发. 2021(05): 146-149 .
    3. 孟正琴,陈宗素,张永菊. 正交试验法对六盘水某煤泥浮选条件优化的研究. 山东化工. 2020(01): 20-21+23 .
    4. 徐学卫. 田庄选煤厂二次浮选工艺的设计与实践. 选煤技术. 2020(03): 74-77 .
    5. 柴炳升,胡峰. 石槽村选煤厂重介质浅槽分选工艺探究. 煤炭加工与综合利用. 2020(08): 33-34+38 .
    6. 刘宸,李秋科,李大虎,高飞云,王建忠,王文才,曹钊. 基于响应曲面法的五虎山煤泥浮选条件优化研究. 选煤技术. 2020(05): 8-14 .
    7. 陈鹏,白新伟,石开仪,潘东,王成勇. 煤泥分级浮选精煤最高产率预测. 矿业研究与开发. 2020(05): 139-143 .
    8. 徐江婵,熊余,朱艳. 细粒煤泥浮选正交试验初步研究. 河南科技. 2019(34): 92-94 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (257) PDF downloads (20) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return