ZHAO Xinyue, ZHAI Bowen, QIAO Hongbing, et al. Path planning of drilling arm of hydraulic bolt drilling rig[J]. Journal of Mine Automation,2023,49(3):70-76. DOI: 10.13272/j.issn.1671-251x.2022060055
Citation: ZHAO Xinyue, ZHAI Bowen, QIAO Hongbing, et al. Path planning of drilling arm of hydraulic bolt drilling rig[J]. Journal of Mine Automation,2023,49(3):70-76. DOI: 10.13272/j.issn.1671-251x.2022060055

Path planning of drilling arm of hydraulic bolt drilling rig

More Information
  • Received Date: June 14, 2022
  • Revised Date: March 01, 2023
  • Available Online: October 18, 2022
  • When the hydraulic bolt drilling rig is working, it is necessary to accurately control the orientation of the drilling bit in the working space and the angle and distance between the drilling bit and the roadway wall. It has very high requirements for the adjustment capability of the drilling arm. At present, there is little research on automatic positioning and autonomous path planning of hydraulic bolt drilling rig. In order to solve the above problems, a path planning method for the drilling arm of hydraulic bolt drilling rig is proposed. Based on the working parameters of the CMM2-36 mine hydraulic bolt drilling rig and the structure of the drilling arm, the 3D model of the drilling arm is built and simulated on the Matlab platform. The continuous path planning scheme is adopted. The joint angle planning method of the drilling arm based on the cubic polynomial interpolation method cannot guarantee the acceleration of the drilling arm at the beginning and end positions to be 0. In order to solve the above problems, the fifth polynomial interpolation method is adopted to plan the joint angle of the drilling arm. Taking the roadway roof as an example, 32 drilling positioning points are set on the roof. Three path planning schemes are designed and compared. It is concluded that the "工"-shaped path has the shortest distance and the most reasonable trajectory. The D-H coordinate system is constructed based on kinematics theory. The forward and inverse kinematics of the drilling arm is solved. The theoretical maximum workspace of the drilling arm of the hydraulic bolt drilling rig is solved by the Monte Carlo method. Therefore, the drilling arm will not collide with the roadway and the safety of the work is ensured. The simulation results show that on the premise of meeting the requirements of roadway support, the end drill frame of the drilling arm of the hydraulic bolt drilling rig can realize automatic positioning and independent path planning. And the drilljing arm will not collide with the roadway, which can ensure work safety.
  • [1]
    袁益,舒展. 中美能源安全现状比较与启示[J]. 中外能源,2019,24(2):1-14.

    YUAN Yi,SHU Zhan. Comparison of energy security of China and the US and the inspirations[J]. Sino-Global Energy,2019,24(2):1-14.
    [2]
    李国清,王浩,侯杰,等. 地下金属矿山智能化技术进展[J]. 金属矿山,2021(11):1-12. DOI: 10.19614/j.cnki.jsks.202111001

    LI Guoqing,WANG Hao,HOU Jie,et al. Progress of intelligent technology in underground metal mines[J]. Metal Mine,2021(11):1-12. DOI: 10.19614/j.cnki.jsks.202111001
    [3]
    王晓瑜. 浅谈国内外锚杆钻机现状与发展[J]. 机电一体化,2016,22(6):42-46. DOI: 10.16413/j.cnki.issn.1007-080x.2016.06.008

    WANG Xiaoyu. Discussion on the current status and development of jumbolter in domestic and overseas[J]. Mechatronics,2016,22(6):42-46. DOI: 10.16413/j.cnki.issn.1007-080x.2016.06.008
    [4]
    兰君. 中国煤炭产业转型升级与空间布局优化研究[D]. 北京: 中国地质大学(北京), 2019.

    LAN Jun. Research on transformation and upgrading of China's coal industry and optimization of its spatial distribution[D]. Beijing: China University of Geosciences, Beijing, 2019.
    [5]
    贺立军,鲍亮,刘银. 新型多功能锚杆钻机液压系统的设计[J]. 煤矿机械,2010,31(9):27-29. DOI: 10.3969/j.issn.1003-0794.2010.09.013

    HE Lijun,BAO Liang,LIU Yin. Design of new multi-functional roofbolter hydraulic system[J]. Coal Mine Machinery,2010,31(9):27-29. DOI: 10.3969/j.issn.1003-0794.2010.09.013
    [6]
    郝雪弟,景新平,张中平,等. 机器人化钻锚车钻臂工作空间分析及轨迹规划[J]. 中南大学学报(自然科学版),2019,50(9):2128-2137. DOI: 10.11817/j.issn.1672-7207.2019.09.009

    HAO Xuedi,JING Xinping,ZHANG Zhongping,et al. Workspace analysis and trajectory planning of drill arm of roboticized bolting truck[J]. Journal of Central South University(Science and Technology),2019,50(9):2128-2137. DOI: 10.11817/j.issn.1672-7207.2019.09.009
    [7]
    黄厚华. 履带式液压锚杆钻车关键结构及液压系统设计与研究[D]. 徐州: 中国矿业大学, 2019.

    HUANG Houhua. Design and research on key structure and hydraulic system of crawler hydraulic anchor drilling truck[D]. Xuzhou: China University of Mining and Technology, 2019.
    [8]
    郭孝先. 煤矿钻爆法岩巷掘进机械化作业线的形成与发展[J]. 凿岩机械气动工具,2018(2):26-32. DOI: 10.19449/j.cnki.2095-6282.2018.02.004

    GUO Xiaoxian. Formation and development of mechanized rock drift excavation operation line using drilling-blasting method in coal mine[J]. Rock Drilling Machinery & Pneumatic Tools,2018(2):26-32. DOI: 10.19449/j.cnki.2095-6282.2018.02.004
    [9]
    陈荣华. 凿岩机器人钻臂定位控制研究[D]. 赣州: 江西理工大学, 2017.

    CHEN Ronghua. Research on positioning control of rock drilling robot drilling boom[D]. Ganzhou: Jiangxi University of Science and Technology, 2017.
    [10]
    杨健健,张强,王超,等. 煤矿掘进机的机器人化研究现状与发展[J]. 煤炭学报,2020,45(8):2995-3005. DOI: 10.13225/j.cnki.jccs.2019.1452

    YANG Jianjian,ZHANG Qiang,WANG Chao,et al. Status and development of robotization research on roadheader for coal mines[J]. Journal of China Coal Society,2020,45(8):2995-3005. DOI: 10.13225/j.cnki.jccs.2019.1452
    [11]
    郭锐,石月,李永涛,等. 液压凿岩机器人机械臂轨迹规划研究[J]. 中国工程机械学报,2021,19(4):289-294. DOI: 10.15999/j.cnki.311926.2021.04.002

    GUO Rui,SHI Yue,LI Yongtao,et al. Research on trajectory planning of hydraulic rockdrilling robot manipulator[J]. Chinese Journal of Construction Machinery,2021,19(4):289-294. DOI: 10.15999/j.cnki.311926.2021.04.002
    [12]
    徐扣. 六自由度机械臂的逆运动学求解与轨迹规划研究[D]. 广州: 广东工业大学, 2016.

    XU Kou. Inverse kinematics solution and trajectory planning of 6-DOF manipulator[D]. Guangzhou: Guangdong University of Technology, 2016.
    [13]
    魏丽君,吴海波,刘海龙,等. 基于D−H算法的移动机械臂正运动学研究[J]. 计量与测试技术,2020,47(10):1-5. DOI: 10.15988/j.cnki.1004-6941.2020.10.001

    WEI Lijun,WU Haibo,LIU Hailong,et al. Research on trajectory planning of mobile manipulator based on improved gradient projection algorithm[J]. Metrology & Measurement Technique,2020,47(10):1-5. DOI: 10.15988/j.cnki.1004-6941.2020.10.001
    [14]
    周友行,唐稳庄,张建勋. 基于运动轨迹的机器人运动学逆解研究[J]. 机械科学与技术,2009,28(7):862-866. DOI: 10.3321/j.issn:1003-8728.2009.07.005

    ZHOU Youhang,TANG Wenzhuang,ZHANG Jianxun. A study of the inverse kinematics of a multi-joint redundant robot based on its moving path[J]. Mechanical Science and Technology for Aerospace Engineering,2009,28(7):862-866. DOI: 10.3321/j.issn:1003-8728.2009.07.005
    [15]
    薛忠健. 基于D−H法的锻造机器人运动学分析[J]. 机电工程技术,2020,49(11):40-42,128. DOI: 10.3969/j.issn.1009-9492.2020.11.010

    XUE Zhongjian. Kinematic analysis of forging robot based on D-H method[J]. Mechanical & Electrical Engineering Technology,2020,49(11):40-42,128. DOI: 10.3969/j.issn.1009-9492.2020.11.010
    [16]
    朱庆浩. 六轴工业机器人运动规划研究[D]. 南京: 南京信息工程大学, 2021.

    ZHU Qinghao. Research on motion planning of six-axis industrial robot[D]. Nanjing: Nanjing University of Information Science and Technology, 2021.
    [17]
    WANG Moran,LI Zhixin. Simulations for gas flows in microgeometries using the direct simulation Monte Carlo method[J]. International Journal of Heat and Fluid Flow,2004,25(6):975-985. DOI: 10.1016/j.ijheatfluidflow.2004.02.024
    [18]
    ZHANG Jiaxin. Modern Monte Carlo methods for efficient uncertainty quantification and propagation: a survey[EB/OL]. [2022-05-21]. https://arxiv.org/abs/2011.00680.
    [19]
    任军,李帅,王俊杰,等. 锚杆钻车钻臂工作空间分析及仿真[J]. 煤矿机械,2021,42(1):83-85. DOI: 10.13436/j.mkjx.202101027

    REN Jun,LI Shuai,WANG Junjie,et al. Analysis and simulation of working space of drill arm of anchor machine[J]. Coal Mine Machinery,2021,42(1):83-85. DOI: 10.13436/j.mkjx.202101027
    [20]
    张思达. 基于ROS系统的机械臂轨迹规划与抓取[D]. 大连: 大连理工大学, 2021.

    ZHANG Sida. Trajectory planning and grasping of manipulator based on ROS[D]. Dalian: Dalian University of Technology, 2021.
    [21]
    郑秀娟. 移动机械臂的运动控制与轨迹规划算法研究[D]. 武汉: 武汉科技大学, 2012.

    ZHENG Xiujuan. Research on motion control and trajectory planning algorithm for mobile manipulator[D]. Wuhan: Wuhan University of Science and Technology, 2012.
  • Related Articles

    [1]ZHOU Yiheng, YAN Jiaming, WU Xinzhong, REN Zihui. Comparison and analysis of aging characteristics of insulation paper between mine power transformer and ordinary power transformer[J]. Journal of Mine Automation, 2020, 46(11): 34-40. DOI: 10.13272/j.issn.1671 -251x.2020080095
    [2]REN Xiaohong, WAN Hong, YU Xiao, DING Enjie. Open-circuit fault diagnosis of three-level inverter based on Park transformatio[J]. Journal of Mine Automation, 2020, 46(5): 82-86. DOI: 10.13272/j.issn.1671-251x.17523
    [3]LI Shiguang, XUE Han, LI Zhen, GAO Zhengzhong, LI Ying. Fault diagnosis of mine-used transformer based on optimized fuzzy Petri net[J]. Journal of Mine Automation, 2017, 43(5): 54-57. DOI: 10.13272/j.issn.1671-251x.2017.05.013
    [4]LI Hong, TIAN Mu-qi. Application of Rough Set in Fault Diagnosis of Power Transformer[J]. Journal of Mine Automation, 2011, 37(3): 32-35.
    [5]LI De-chen, LIAO Hong-mei, WANG Yu-yang, LV Ming. Analysis of Winding Connection Way of Main Transformers of Power Transformer and Its Simulatio[J]. Journal of Mine Automation, 2007, 33(5): 28-29.
    [6]LIN Chun-ying. Applying the Phase Recurrence Algorithm to Decide Connection Group of Three-phase Transformer[J]. Journal of Mine Automation, 2005, 31(6): 28-29.
    [7]SHEN Jin-lin, WANG Zhu-hua. Structure Reform of Rectifier Transformer with High-voltage Silico[J]. Journal of Mine Automation, 2004, 30(1): 38-39.
    [8]ZHANG Jin-bo, HU Gang, ZHANG Xue-wu. Using Isolation Way of Tone Transformer to Realize Remote Data Transmissio[J]. Journal of Mine Automation, 2002, 28(2): 36-37.
    [9]WU Yan-hua, MENG Jiao-ru. The Operating Disturbances Analysis of the Coal Transformer[J]. Journal of Mine Automation, 2001, 27(3): 40-42.
    [10]XIAO Hai-feng, HONG Ting. Secondary Line Design of Centralized Control for Low-voltage System with Δ-Y0-11/Y-Y0-12 in Coal Preparation Plant[J]. Journal of Mine Automation, 2000, 26(5): 46-46.
  • Cited by

    Periodical cited type(6)

    1. 杨敬娜,郝克明,朱霄珣,董勇敢. 激励下齿轮-转子系统故障模糊C聚类诊断. 机械设计与制造. 2023(04): 296-299+304 .
    2. 张德宇,罗玉梅. 粗糙集下网络大数据混合属性特征检测仿真. 计算机仿真. 2021(01): 460-463+485 .
    3. 潘红光,宋浩骞,苏涛,马彪. 基于SVM的煤炭低位发热量软测量. 西安科技大学学报. 2021(06): 1130-1137 .
    4. 周明春. 矿山机械设备故障的检测方法研究. 世界有色金属. 2019(08): 60+62 .
    5. 孙海霞,木合塔尔·克力木,王晨,李卉. RS-CS-SVM在电液伺服系统故障诊断中的应用. 组合机床与自动化加工技术. 2018(06): 47-50+55 .
    6. 刘洋,丁云飞. 风力发电机典型智能故障诊断方法综述. 上海电机学院学报. 2017(06): 353-360+372 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (279) PDF downloads (33) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return