Citation: | ZHANG Shiru, HUANG Zongliu, ZHANG Yuanhao, et al. Coal and gangue recognition research based on improved YOLOv5[J]. Journal of Mine Automation,2022,48(11):39-44. DOI: 10.13272/j.issn.1671-251x.2022060052 |
[1] |
曾伟,熊俊杰,赵伟哲,等. “双碳”目标下智慧社区新能源消纳的政策与技术研究[J]. 价格理论与实践,2022(4):71-75,205.
ZENG Wei,XIONG Junjie,ZHAO Weizhe,et al. Policy and technology research on new energy consumption in smart communities under the carbon peaking and carbon neutrality strategy[J]. Price:Theory & Practice,2022(4):71-75,205.
|
[2] |
钱鸣高,缪协兴,许家林. 资源与环境协调(绿色)开采[J]. 煤炭学报,2007,33(1):1-7. DOI: 10.3321/j.issn:0253-9993.2007.01.001
QIAN Minggao,MIAO Xiexing,XU Jialin. Green mining of coal resources harmonizing with environment[J]. Journal of China Coal Society,2007,33(1):1-7. DOI: 10.3321/j.issn:0253-9993.2007.01.001
|
[3] |
曹现刚,薛祯也. 基于迁移学习的GoogLenet煤矸石图像识别[J]. 软件导刊,2019,18(12):183-186.
CAO Xiangang,XUE Zhenye. Coal gangue identification by using transfer learning in GoogLenet[J]. Software Guide,2019,18(12):183-186.
|
[4] |
PU Yuanyuan,APEL D B,SZMIGIEL A,et al. Image recognition of coal and coal gangue using a convolutional neural network and transfer learning[J]. Energies,2019,12(9):1-11.
|
[5] |
杜京义,史志芒,郝乐,等. 轻量化煤矸目标检测方法研究[J]. 工矿自动化,2021,47(11):119-125.
DU Jingyi,SHI Zhimang,HAO Le,et al. Research on lightweight coal and gangue target detection method[J]. Industry and Mine Automation,2021,47(11):119-125.
|
[6] |
汝洪芳,张冬冬. YOLOv5检测煤矸石的改进方法[J]. 黑龙江科技大学学报,2021,31(6):818-823. DOI: 10.3969/j.issn.2095-7262.2021.06.023
RU Hongfang,ZHANG Dongdong. Coal gangue detection method based on improved YOLOv5[J]. Journal of Heilongjiang University of Science and Technology,2021,31(6):818-823. DOI: 10.3969/j.issn.2095-7262.2021.06.023
|
[7] |
桂方俊,李尧. 基于CBA−YOLO模型的煤矸石检测[J]. 工矿自动化,2022,48(6):128-133.
GUI Fangjun,LI Yao. Coal gangue detection based on CBA-YOLO model[J]. Journal of Mine Automation,2022,48(6):128-133.
|
[8] |
沈科,季亮,张袁浩,等. 基于改进YOLOv5s模型的煤矸目标检测[J]. 工矿自动化,2021,47(11):107-111,118.
SHEN Ke,JI Liang,ZHANG Yuanhao,et al. Research on coal and gangue detection algorithm based on improved YOLOv5s model[J]. Industry and Mine Automation,2021,47(11):107-111,118.
|
[9] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[EB/OL]. [2022-05-25]. https://arxiv.org/abs/1506.02640.
|
[10] |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2022-05-25]. https://arxiv.org/abs/2004.10934.
|
[11] |
HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. DOI: 10.1109/TPAMI.2015.2389824
|
[12] |
林清平,张麒麟,肖蕾. 采用改进YOLOv5网络的遥感图像目标识别方法[J]. 空军预警学院学报,2021,35(2):117-120.
LIN Qingping,ZHANG Qilin,XIAO Lei. Method of remote sensing image target recognition based on improved YOLOv5 network[J]. Journal of Air Force Early Warning Academy,2021,35(2):117-120.
|
[13] |
CHEN L C,PAPANDREOU G,KOKKINOS I,et al. DeepLab:semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,40(4):834-848. DOI: 10.1109/TPAMI.2017.2699184
|
[14] |
KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. [2022-05-25]. https://arxiv.org/abs/1412.6980.
|
[15] |
ROBBINS H, MONRO S. A stochastic approximation method[M]. New York: Springer, 1985.
|
[16] |
YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL]. [2022-05-25]. https://arxiv.org/abs/1511.07122.
|