ZHAO Xianzhi, CHEN Junlin. Prediction method of coal calorific value based on quantile regression[J]. Journal of Mine Automation,2022,48(7):130-134. DOI: 10.13272/j.issn.1671-251x.2022060023
Citation: ZHAO Xianzhi, CHEN Junlin. Prediction method of coal calorific value based on quantile regression[J]. Journal of Mine Automation,2022,48(7):130-134. DOI: 10.13272/j.issn.1671-251x.2022060023

Prediction method of coal calorific value based on quantile regression

More Information
  • Received Date: June 07, 2022
  • Revised Date: July 18, 2022
  • Available Online: July 05, 2022
  • At present, the traditional linear regression model is mainly used to predict the calorific value of coal. But it is difficult to express the complex relationship between independent variables and dependent variables. The model needs data to obey specific distribution assumptions. And the model is sensitive to abnormal values. In view of the above problems, a prediction method of coal calorific value based on quantile regression is proposed. The method selects the coal industry analysis indicators that are easy to measure, such as total moisture, ash and volatile matter. The method uses two quantile regression methods, linear quantile regression and quantile regression forest, to predict the calorific value of coal. The results are compared with that of the traditional linear regression method. The results show that the predicted value of calorific value of coal given by linear regression is only a conditional mean value. But the range of predicted value of calorific value of coal can be given by quantile regression. The prediction effect of quantile regression is better than linear regression and linear quantile regression. The importance of total moisture for the prediction of calorific value of coal is much greater than that of ash and volatile matter. Total moisture has great influence on the prediction of calorific value of low calorific value coal. But total moisture has little influence on the prediction of calorific value of high calorific value coal. Volatile matter and ash have little influence on the prediction of calorific value of low calorific value coal. But volatile matter and ash have a great influence on the prediction of calorific value of high calorific value coal.
  • [1]
    李纯毅. 煤质分析[M]. 北京: 北京理工大学出版社, 2012.

    LI Chunyi. Coal quality analysis[M]. Beijing: Beijing Institute of Technology Press, 2012.
    [2]
    李英华. 煤质分析应用技术指南[M]. 北京: 中国标准出版社, 1991.

    LI Yinghua. Technical guide for application of coal quality analysis[M]. Beijing: Standards Press of China, 1991.
    [3]
    郝锡林. 杏花矿洗混煤发热量回归方程的建立[J]. 煤炭技术,2006,25(3):75-77. DOI: 10.3969/j.issn.1008-8725.2006.03.040

    HAO Xilin. Establishment of tropic equation for the quality of heat of washed-coal in Xinghua Coal Mine[J]. Coal Technology,2006,25(3):75-77. DOI: 10.3969/j.issn.1008-8725.2006.03.040
    [4]
    郝飞. 影响煤炭发热量测量的常见因素分析[J]. 煤质技术,2019,34(5):61-64. DOI: 10.3969/j.issn.1007-7677.2019.05.015

    HAO Fei. Analysis of the common influencing factors which affect coal calorific value determination[J]. Coal Quality Technology,2019,34(5):61-64. DOI: 10.3969/j.issn.1007-7677.2019.05.015
    [5]
    李大虎,李秋科,王文才,等. 基于MIV特征选择与PSO−BP神经网络的煤炭发热量预测[J]. 煤炭工程,2020,52(11):154-160.

    LI Dahu,LI Qiuke,WANG Wencai,et al. Prediction of coal calorific value based on MIV characteristic variable selection and PSO-BP neural network[J]. Coal Engineering,2020,52(11):154-160.
    [6]
    李大虎,韦鲁滨,朱学帅,等. 基于SVR与特征变量选择方法的煤炭发热量预测[J]. 煤炭学报,2019,44(增刊1):278-288. DOI: 10.13225/j.cnki.jccs.2018.1268

    LI Dahu,WEI Lubin,ZHU Xueshuai,et al. Prediction of coal calorific value based on SVR and characteristic variables selection method[J]. Journal of China Coal Society,2019,44(S1):278-288. DOI: 10.13225/j.cnki.jccs.2018.1268
    [7]
    潘红光,宋浩骞,苏涛,等. 基于SVM的煤炭低位发热量软测量[J]. 西安科技大学学报,2021,41(6):1130-1137. DOI: 10.13800/j.cnki.xakjdxxb.2021.0622

    PAN Hongguang,SONG Haoqian,SU Tao,et al. Soft sensor of coal net calorific value based on SVM[J]. Journal of Xi'an University of Science and Technology,2021,41(6):1130-1137. DOI: 10.13800/j.cnki.xakjdxxb.2021.0622
    [8]
    KOENKER R,BASSETT G. Regression quantiles[J]. Econometrica:Journal of the Econometric Society,1978,46(1):33-50. DOI: 10.2307/1913643
    [9]
    PALMER C, OMAN C, PARK A, et al. The US geological survey coal quality(COALQUAL) database version 3.0[R]. Reston: US Geological Survey, 2015.
    [10]
    陈建宝,丁军军. 分位数回归技术综述[J]. 统计与信息论坛,2008(3):89-96. DOI: 10.3969/j.issn.1007-3116.2008.03.018

    CHEN Jianbao,DING Junjun. A review of technologies on quantile regression[J]. Statistics & Information Forum,2008(3):89-96. DOI: 10.3969/j.issn.1007-3116.2008.03.018
    [11]
    关静. 分位数回归理论及其应用[D]. 天津: 天津大学, 2009.

    GUAN Jing. The theory of quantile regression and applications[D]. Tianjin: Tianjin University, 2009.
    [12]
    MEINSHAUSEN N,RIDGEWAY G. Quantile regression forests[J]. Journal of Machine Learning Research,2006,7(2):983-999.
    [13]
    PRADEEPKUMAR D,RAVI V. Forecasting financial time series volatility using particle swarm optimization trained quantile regression neural network[J]. Applied Soft Computing,2017,58:35-52. DOI: 10.1016/j.asoc.2017.04.014
    [14]
    HE Yaoyao,QIN Yang,WANG Shuo,et al. Electricity consumption probability density forecasting method based on LASSO-quantile regression neural network[J]. Applied Energy,2019,233:565-575.
    [15]
    LIAW A,WIENER M. Classification and regression by random forest[J]. R News,2002,2(3):18-22.
  • Related Articles

    [1]ZHANG Shaobin, JIANG Weiliang, RUI Feng. Current status and development trend of measuring methods of conveying capacity of mine-used belt conveyor[J]. Journal of Mine Automation, 2019, 45(5): 100-103. DOI: 10.13272/j.issn.1671-251x.2019010055
    [2]MEN Rujia, LEI Zhipeng, LIN Lingyan, ZHANG Guodong, ZHAO Ruixue, ZHU Jianfei, XU Chunyu, SONG Jiancheng, TIAN Muqin. Insulation state assessment of mine-used ethylene propylene rubber cable under electro-thermal aging[J]. Journal of Mine Automation, 2019, 45(4): 67-71. DOI: 10.13272/j.issn.1671-251x.2019010038
    [3]ZHANG Jianwen, QI Minghui, WANG Zheng, YAN Jiaming. An accurate estimation method for state of charge of mine-used energy storage battery[J]. Journal of Mine Automation, 2019, 45(1): 65-69. DOI: 10.13272/j.issn.1671-251x.2018060036
    [4]LI Qiwei. Design of lithium battery management system for explosion-proof electric vehicle[J]. Journal of Mine Automation, 2017, 43(4): 5-9. DOI: 10.13272/j.issn.1671-251x.2017.04.002
    [5]GUAN Hengzhu, DING Guibao, XIAO Qu. Research of selection method of transformer capacity for mine vertical shaft constructio[J]. Journal of Mine Automation, 2016, 42(1): 67-70. DOI: 10.13272/j.issn.1671-251x.2016.01.020
    [6]YANG Lei, YANG Yi, YANG Dongyong, GU Dongyua. Estimation method of state of charge of lithium battery for nodes of wireless sensor network[J]. Journal of Mine Automation, 2015, 41(1): 29-32. DOI: 10.13272/j.issn.1671-251x.2015.01.008
    [7]RUI Qihua, ZHAO Liang, WANG Lei, LI Jiyu. Design of mine-used battery management system for large capacity LiFePO4[J]. Journal of Mine Automation, 2014, 40(2): 5-7. DOI: 10.13272/j.issn.1671-251x.2014.02.002
    [8]WANG Sha-sha, LOU Gao-feng, TANG Xia, SHI Li-ping, ZHANG En-feng. State of charge estimation of battery in mine-used movable lifesaving cabin based on extended Kalman filtering method[J]. Journal of Mine Automation, 2013, 39(2): 43-47.
    [9]LU Yong-fang, CHENG Zhi-lei, WANG Xiao-wei, LIU Ying-ying. Research of Power Prediction of Wind Farm Based on Sequential Index Smoothing Method[J]. Journal of Mine Automation, 2012, 38(8): 75-78.

Catalog

    Article Metrics

    Article views (237) PDF downloads (17) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return