Citation: | ZHAO Xianzhi, CHEN Junlin. Prediction method of coal calorific value based on quantile regression[J]. Journal of Mine Automation,2022,48(7):130-134. doi: 10.13272/j.issn.1671-251x.2022060023 |
[1] |
李纯毅. 煤质分析[M]. 北京: 北京理工大学出版社, 2012.
LI Chunyi. Coal quality analysis[M]. Beijing: Beijing Institute of Technology Press, 2012.
|
[2] |
李英华. 煤质分析应用技术指南[M]. 北京: 中国标准出版社, 1991.
LI Yinghua. Technical guide for application of coal quality analysis[M]. Beijing: Standards Press of China, 1991.
|
[3] |
郝锡林. 杏花矿洗混煤发热量回归方程的建立[J]. 煤炭技术,2006,25(3):75-77. doi: 10.3969/j.issn.1008-8725.2006.03.040
HAO Xilin. Establishment of tropic equation for the quality of heat of washed-coal in Xinghua Coal Mine[J]. Coal Technology,2006,25(3):75-77. doi: 10.3969/j.issn.1008-8725.2006.03.040
|
[4] |
郝飞. 影响煤炭发热量测量的常见因素分析[J]. 煤质技术,2019,34(5):61-64. doi: 10.3969/j.issn.1007-7677.2019.05.015
HAO Fei. Analysis of the common influencing factors which affect coal calorific value determination[J]. Coal Quality Technology,2019,34(5):61-64. doi: 10.3969/j.issn.1007-7677.2019.05.015
|
[5] |
李大虎,李秋科,王文才,等. 基于MIV特征选择与PSO−BP神经网络的煤炭发热量预测[J]. 煤炭工程,2020,52(11):154-160.
LI Dahu,LI Qiuke,WANG Wencai,et al. Prediction of coal calorific value based on MIV characteristic variable selection and PSO-BP neural network[J]. Coal Engineering,2020,52(11):154-160.
|
[6] |
李大虎,韦鲁滨,朱学帅,等. 基于SVR与特征变量选择方法的煤炭发热量预测[J]. 煤炭学报,2019,44(增刊1):278-288. doi: 10.13225/j.cnki.jccs.2018.1268
LI Dahu,WEI Lubin,ZHU Xueshuai,et al. Prediction of coal calorific value based on SVR and characteristic variables selection method[J]. Journal of China Coal Society,2019,44(S1):278-288. doi: 10.13225/j.cnki.jccs.2018.1268
|
[7] |
潘红光,宋浩骞,苏涛,等. 基于SVM的煤炭低位发热量软测量[J]. 西安科技大学学报,2021,41(6):1130-1137. doi: 10.13800/j.cnki.xakjdxxb.2021.0622
PAN Hongguang,SONG Haoqian,SU Tao,et al. Soft sensor of coal net calorific value based on SVM[J]. Journal of Xi'an University of Science and Technology,2021,41(6):1130-1137. doi: 10.13800/j.cnki.xakjdxxb.2021.0622
|
[8] |
KOENKER R,BASSETT G. Regression quantiles[J]. Econometrica:Journal of the Econometric Society,1978,46(1):33-50. doi: 10.2307/1913643
|
[9] |
PALMER C, OMAN C, PARK A, et al. The US geological survey coal quality(COALQUAL) database version 3.0[R]. Reston: US Geological Survey, 2015.
|
[10] |
陈建宝,丁军军. 分位数回归技术综述[J]. 统计与信息论坛,2008(3):89-96. doi: 10.3969/j.issn.1007-3116.2008.03.018
CHEN Jianbao,DING Junjun. A review of technologies on quantile regression[J]. Statistics & Information Forum,2008(3):89-96. doi: 10.3969/j.issn.1007-3116.2008.03.018
|
[11] |
关静. 分位数回归理论及其应用[D]. 天津: 天津大学, 2009.
GUAN Jing. The theory of quantile regression and applications[D]. Tianjin: Tianjin University, 2009.
|
[12] |
MEINSHAUSEN N,RIDGEWAY G. Quantile regression forests[J]. Journal of Machine Learning Research,2006,7(2):983-999.
|
[13] |
PRADEEPKUMAR D,RAVI V. Forecasting financial time series volatility using particle swarm optimization trained quantile regression neural network[J]. Applied Soft Computing,2017,58:35-52. doi: 10.1016/j.asoc.2017.04.014
|
[14] |
HE Yaoyao,QIN Yang,WANG Shuo,et al. Electricity consumption probability density forecasting method based on LASSO-quantile regression neural network[J]. Applied Energy,2019,233:565-575.
|
[15] |
LIAW A,WIENER M. Classification and regression by random forest[J]. R News,2002,2(3):18-22.
|