Volume 48 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
TANG Jun, LI Jingzhao, SHI Qing, et al. Video real-time detection of bulk material accumulation on belt conveyor[J]. Journal of Mine Automation,2022,48(10):62-69, 75.  doi: 10.13272/j.issn.1671-251x.2022050078
Citation: TANG Jun, LI Jingzhao, SHI Qing, et al. Video real-time detection of bulk material accumulation on belt conveyor[J]. Journal of Mine Automation,2022,48(10):62-69, 75.  doi: 10.13272/j.issn.1671-251x.2022050078

Video real-time detection of bulk material accumulation on belt conveyor

doi: 10.13272/j.issn.1671-251x.2022050078
  • Received Date: 2022-05-29
  • Rev Recd Date: 2022-09-29
  • Available Online: 2022-08-16
  • The non-contact bulk material accumulation detection method has problems, such as slow detection speed, low detection precision in image fuzzy scene, large memory requirement of deep learning model. In order to solve the above problems, a video real-time detection method of bulk material accumulation on belt conveyor based on lightweight Mask-RCNN (mask region-based convolutional neural network) is proposed. Firstly, the collected image is preprocessed by the dark channel prior algorithm to reduce the image fogging phenomenon caused by dust in the transportation and loading process and improve the image edge features. The traditional Mask-RCNN backbone network ResNet can not meet the requirement of real-time detection of bulk material accumulation on an embedded platform. In order to solve this problem, the defogging preprocessed image is input into the backbone network based on MobileNetV2 + feature pyramid network (FPN) for feature extraction. The feature graph is generated. The backbone network is designed to be lightweight. The backbone network is deployed on the embedded platform to collect image data in real-time for instance segmentation. In order to find the edge of the segmented object more accurately, a method of adding edge loss in the mask branch of traditional Mask-RCNN is proposed. The mask is generated by using full convolutional network layer. The edge loss function is constructed by combining the Scharr operator. The segmentation image is obtained by fusing object classification, bounding box regression and semantic information. Finally, the bulk material accumulation detection is realized by judging whether the pixel value in the bulk material accumulation mask exceeds a preset threshold value. The experimental results show that the memory requirement of the proposed method is reduced to 1/5 of that of the model taking ResNet 101 as the backbone network. The average precision mean value after image defogging pre-processing is increased by 8%. The average detection time of one image is 0.56 s, the detection precision can reach 91.8%.

     

  • loading
  • [1]
    杜京义,陈瑞,郝乐,等. 煤矿带式输送机异物检测[J]. 工矿自动化,2021,47(8):77-83. doi: 10.13272/j.issn.1671-251x.2021040026

    DU Jingyi,CHEN Rui,HAO Le,et al. Coal mine belt conveyor foreign object detection[J]. Industry and Mine Automation,2021,47(8):77-83. doi: 10.13272/j.issn.1671-251x.2021040026
    [2]
    游磊,朱兴林,秦伟,等. 基于曲面重建的带式输送机堆煤识别方法[J]. 工矿自动化,2021,47(6):45-50.

    YOU Lei,ZHU Xinglin,QIN Wei,et al. Coal stacking identification method of belt conveyor based on surface reconstruction[J]. Industry and Mine Automation,2021,47(6):45-50.
    [3]
    姜文涛,王梓民,张驰. 基于曲量场空间的皮带堆煤识别[J]. 传感器与微系统,2021,40(1):140-143. doi: 10.13873/J.1000-9787(2021)01-0140-04

    JIANG Wentao,WANG Zimin,ZHANG Chi. Coal pile recognition based on curved space field[J]. Transducer and Microsystem Technologies,2021,40(1):140-143. doi: 10.13873/J.1000-9787(2021)01-0140-04
    [4]
    张涛,吴高镇. 带式输送机故障巡检机器人系统设计[J]. 工矿自动化,2018,44(10):72-76. doi: 10.13272/j.issn.1671-251x.2018060026

    ZHANG Tao,WU Gaozhen. Design of fault inspection robot system for belt conveyor[J]. Industry and Mine Automation,2018,44(10):72-76. doi: 10.13272/j.issn.1671-251x.2018060026
    [5]
    王瀚哲. 基于图像识别的带式输送机监护系统[J]. 煤矿机械,2015,36(5):290-292. doi: 10.13436/j.mkjx.201505120

    WANG Hanzhe. Monitor system of belt conveyor based on image recognition[J]. Coal Mine Machinery,2015,36(5):290-292. doi: 10.13436/j.mkjx.201505120
    [6]
    彭利泽. 基于视觉的传输带堆煤体积监测系统设计[D]. 太原: 中北大学, 2021.

    PENG Lize. Design of volume monitoring system for coal stacking in transmission belt based on vision [D]. Taiyuan: North University of China, 2021.
    [7]
    HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]. The IEEE International Conference on Computer Vision, Venice, 2017.
    [8]
    南晓虎,丁雷. 深度学习的典型目标检测算法综述[J]. 计算机应用研究,2020,37(增刊2):15-21.

    NAN Xiaohu,DING Lei. Review of typical target detection algorithms for deep learning[J]. Application Research of Computers,2020,37(S2):15-21.
    [9]
    HE K,SUN J,TANG X. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2011,33(12):2341-2353.
    [10]
    靳欢欢,王双亭,姚继峰,等. 暗通道先验去雾算法优化探讨[J]. 测绘科学,2015,40(11):142-145,167. doi: 10.16251/j.cnki.1009-2307.2015.11.029

    JIN Huanhuan,WANG Shuangting,YAO Jifeng,et al. Optimization of haze removal based on dark channel prior[J]. Science of Surveying and Mapping,2015,40(11):142-145,167. doi: 10.16251/j.cnki.1009-2307.2015.11.029
    [11]
    马宇超,付华良,吴鹏,等. 深度网络自适应优化的Mask R−CNN模型在铸件表面缺陷检测中的应用研究[J]. 现代制造工程,2022(4):112-118.

    MA Yuchao,FU Hualiang,WU Peng,et al. Research on the Mask R-CNN model of deep network adaptive optimization in the detection of casting surface defects[J]. Modern Manufacturing Engineering,2022(4):112-118.
    [12]
    哈马友吉,任万春,张秤,等. 基于轻量级网络MobileNet V2的二极管玻壳缺陷识别[J]. 传感器与微系统,2022,41(4):153-155,160.

    HAMA Youji,REN Wanchun,ZHANG Cheng,et al. Defect recognition of diode glass shells based on lightweight network MobileNet V2[J]. Transducer and Microsystem Technologies,2022,41(4):153-155,160.
    [13]
    魏秀业,程海吉,贺妍,等. 基于特征融合与ResNet的行星齿轮箱故障诊断[J]. 电子测量与仪器学报,2022,36(5):213-222. doi: 10.13382/j.jemi.B2105065

    WEI Xiuye,CHENG Haiji,HE Yan,et al. Fault diagnosis of planetary gearboxes based on feature fusion and ResNet[J]. Journal of Electronic Measurement and Instrumentation,2022,36(5):213-222. doi: 10.13382/j.jemi.B2105065
    [14]
    田枫,白欣宇,刘芳,等. 一种轻量化油田危险区域入侵检测算法[J]. 智能系统学报,2022,17(3):634-642.

    TIAN Feng,BAI Xinyu,LIU Fang,et al. A lightweight intrusion detection algorithm for hazardous areas in oilfields[J]. CAAI Transactions on Intelligent Systems,2022,17(3):634-642.
    [15]
    LIN T Y, P DOLLÁR, GIRSHICK R, et al. Feature pyramid networks for object detection[EB/OL]. [2022-03-25]. https://ui.adsabs.harvard.edu/abs/2016arXiv161203144L/abstract.
    [16]
    王安,王芳荣,郭柏苍,等. 基于边缘检测的视差图效果优化[J]. 计算机应用与软件,2019,36(7):236-241. doi: 10.3969/j.issn.1000-386x.2019.07.040

    WANG An,WANG Fangrong,GUO Baicang,et al. Disparity map optimization based on edge detection[J]. Computer Applications and Software,2019,36(7):236-241. doi: 10.3969/j.issn.1000-386x.2019.07.040
    [17]
    张睿萍, 宁芊, 雷印杰, 等. 基于Mask R−CNN的生活垃圾检测[J/OL]. 计算机工程与科学: 1-8[2022-07-01]. http://www.cnki.com.cn/Article/CJFDTotal-JSJK20220308000.htm.

    ZHANG Ruiping, NING Qian, LEI Yinjie, et al. Garbage detection based on Mask R-CNN[J/OL]. Computer Engineering and Science: 1-8 [2022-07-01]. http://www.cnki.com.cn/Article/CJFDTotal-JSJK20220308000.htm.
    [18]
    李晓玲, 刘广钟, 乔大雷. 改进Mask RCNN在海面船舶实例分割中的应用[J]. 船舶工程, 2021, 43(12): 166-171.

    LI Xiaoling, LIU Guangzhong, QIAO Dalei. Application of improved Mask RCNN in offshore ship instance segmentation [J]. Ship Engineering, 2021, 43 (12): 166-171.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (357) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return