Volume 48 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
GAO Xiang, GAO Yanan. Method for extracting stressed rock crack based on light reflectivity mutation[J]. Journal of Mine Automation,2022,48(8):76-84.  doi: 10.13272/j.issn.1671-251x.2022040066
Citation: GAO Xiang, GAO Yanan. Method for extracting stressed rock crack based on light reflectivity mutation[J]. Journal of Mine Automation,2022,48(8):76-84.  doi: 10.13272/j.issn.1671-251x.2022040066

Method for extracting stressed rock crack based on light reflectivity mutation

doi: 10.13272/j.issn.1671-251x.2022040066
  • Received Date: 2022-04-24
  • Rev Recd Date: 2022-08-10
  • Available Online: 2022-06-27
  • The crack identification and extraction is the basis of understanding the evolution law of surrounding rock cracks. The existing methods for extracting stressed rock cracks based on visible light photos are poor in extracting the cracks of complex rocks (such as granite) composed of polychromatic minerals. In order to solve the problem, a method for extracting stressed rock cracks based on light reflectivity mutation is proposed. The method comprises four key steps of light reflectivity calculation, light reflectivity mutation point identification, light reflectivity mutation point space heterogeneity analysis and crack information extraction. The spatial differentiation of the mutation points of light reflectivity caused by crack growth is the key characteristic of crack identification. Therefore, the index-differentiation coefficient C, which reflects the concentration degree of spatial point distribution, is introduced. It is used to judge whether there is a crack in the digital image according to the spatial differentiation of the mutation points of light reflectivity. After the crack in the digital photo is judged, on one hand, the instantaneous information of the crack activity is reflected through the change speed of the light reflectivity, so as to study when and where cracks occur or expand in the specimen. On the other hand, the cumulative information of crack activity is extracted to analyze the development, propagation and penetration degree of rock surface cracks over a period of time. The experimental result shows that: ① The development and propagation of stress cracks in rock can cause the mutation of light reflectivity. The mutation speed can reach 0.2/s, which is much larger than the change speed (0.03/s) caused by other random factors. ② At the crack active time, the mutation point of light reflectance shows significant spatial differentiation (C value can reach 189), and the differentiation coefficient is much larger than that in random distribution (C value is 1). ③ The proposed method can extract the instantaneous information and cumulative information of crack activity. Finally, the reason for the change of light reflectivity during rock crack, the significance of rock mechanics of the proposed method and its application prospect in roadway safety inspection are discussed.

     

  • loading
  • [1]
    陈世江,朱万成,张敏思,等. 基于数字图像处理技术的岩石节理分形描述[J]. 岩土工程学报,2012,34(11):2087-2092.

    CHEN Shijiang,ZHU Wancheng,ZHANG Minsi,et al. Fractal description of rock joints based on digital image processing technique[J]. Chinese Journal of Geotechnical Engineering,2012,34(11):2087-2092.
    [2]
    刘树新,邢杰,郑旭,等. 岩石轴压CT图像的分区损伤信息与临界破坏识别[J]. 岩土工程学报,2021,43(3):432-438.

    LIU Shuxin,XING Jie,ZHENG Xu,et al. Zonal damage information and critical failure identification of CT images of rock under triaxial compression[J]. Chinese Journal of Geotechnical Engineering,2021,43(3):432-438.
    [3]
    张毅,李皋,王希勇,等. 川西须家河组致密砂岩高温后微组构特征及对力学性能的影响[J]. 岩石力学与工程学报,2021,40(11):2249-2259.

    ZHANG Yi,LI Gao,WANG Xiyong,et al. Microfabric characteristics of tight sandstone of Xujiahe formation in western Sichuan after high temperature and the effect on mechanical properties[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(11):2249-2259.
    [4]
    张艳博,王科学,姚旭龙,等. 基于波速场成像技术的岩石损伤评价研究[J]. 岩石力学与工程学报,2019,38(12):2404-2417.

    ZHANG Yanbo,WANG Kexue,YAO Xulong,et al. Rock damage evaluation based on wave velocity field imaging technology[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(12):2404-2417.
    [5]
    MA Liqiang,SUN Hai,ZHANG Yao,et al. Characteristics of infrared radiation of coal specimens under uniaxial loading[J]. Rock Mechanics and Rock Engineering,2016,49:1567-1572. doi: 10.1007/s00603-015-0780-4
    [6]
    刘春,许强,施斌,等. 岩石颗粒与孔隙系统数字图像识别方法及应用[J]. 岩土工程学报,2018,40(5):925-931. doi: 10.11779/CJGE201805018

    LIU Chun,XU Qiang,SHI Bin,et al. Digital image recognition method of rock particle and pore system and its application[J]. Chinese Journal of Geotechnical Engineering,2018,40(5):925-931. doi: 10.11779/CJGE201805018
    [7]
    王国法,杜毅博,任怀伟,等. 智能化煤矿顶层设计研究与实践[J]. 煤炭学报,2020,45(6):1909-1924.

    WANG Guofa,DU Yibo,REN Huaiwei,et al. Top level design and practice of smart coal mines[J]. Journal of China Coal Society,2020,45(6):1909-1924.
    [8]
    杨永明,鞠杨,毛灵涛. 三轴应力下致密砂岩裂纹展布规律及表征方法[J]. 岩土工程学报,2014,36(5):864-872. doi: 10.11779/CJGE201405008

    YANG Yongming,JU Yang,MAO Lingtao. Growth distribution laws and characterization methods of cracks of compact sandstone subjected to triaxial stress[J]. Chinese Journal of Geotechnical Engineering,2014,36(5):864-872. doi: 10.11779/CJGE201405008
    [9]
    李德建,关磊,韩立强,等. 白皎煤矿玄武岩岩爆破坏微观裂纹特征分析[J]. 煤炭学报,2014,39(2):307-314.

    LI Dejian,GUAN Lei,HAN Liqiang,et al. Analysis of micro-crack characteristics from rockburst failure of basalt in Baijiao Coal Mine content[J]. Journal of China Coal Society,2014,39(2):307-314.
    [10]
    冷彪,张毅,杨辉,等. 隧道掌子面岩体裂隙快速识别方法[J]. 西南交通大学学报,2021,56(2):246-252,322.

    LENG Biao,ZHANG Yi,YANG Hui,et al. Rapid recognition of rock mass fractures in tunnel faces[J]. Journal of Southwest Jiaotong University,2021,56(2):246-252,322.
    [11]
    李兆霖,王连国,姜崇扬,等. 基于实时CT扫描的岩石真三轴条件下三维破裂演化规律[J]. 煤炭学报,2021,46(3):937-949.

    LI Zhaolin,WANG Lianguo,JIANG Chongyang,et al. Three-dimensional fracture evolution patterns of rocks under true triaxial conditions based on real-time CT scanning[J]. Journal of China Coal Society,2021,46(3):937-949.
    [12]
    温世亿,李静,苏霞,等. 复杂应力条件下围岩破坏的细观特征研究[J]. 岩土力学,2010,31(8):2399-2406. doi: 10.3969/j.issn.1000-7598.2010.08.009

    WEN Shiyi,LI Jing,SU Xia,et al. Studies of mesomechanical structure characters of surrounding rock failure under complex stress state[J]. Rock and Soil Mechanics,2010,31(8):2399-2406. doi: 10.3969/j.issn.1000-7598.2010.08.009
    [13]
    李昂,邵国建,孙阳,等. 软硬互层状岩体局部区域的细观非均匀特性研究[J]. 岩石力学与工程学报,2017,36(增刊2):3852-3863.

    LI Ang,SHAO Guojian,SUN Yang,et al. Study on meso-inhomogeneity of local region of alternatively distributed soft and hard composite rockmass[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(S2):3852-3863.
    [14]
    李志伟. 煤岩CT图中基于序列特征的裂隙识别方法研究[D]. 北京: 中国矿业大学(北京), 2020.

    LI Zhiwei. Research on fracture identification methods based on sequence features in CT images of coal-rock[D]. Beijing: China University of Mining and Technology-Beijing, 2020.
    [15]
    吴贤振,高祥,赵奎,等. 岩石破裂过程中红外温度场瞬时变化异常探究[J]. 岩石力学与工程学报,2016,35(8):1578-1594.

    WU Xianzhen,GAO Xiang,ZHAO Kui,et al. Abnormality of transient infrared temperature field(ITF) in the process of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(8):1578-1594.
    [16]
    HUANG Jianwei,LIU Shanjun,LIU Wenfang,et al. Experimental study on the thermal infrared spectral variation of fractured rock[J]. Remote Sensing,2021,13(6):1191. doi: 10.3390/rs13061191
    [17]
    HUANG Jianwei,LIU Shanjun,GAO Xiang,et al. Experimental study of the thermal infrared emissivity variation of loaded rock and its significance[J]. Remote Sensing,2018,10(6):818. doi: 10.3390/rs10060818
    [18]
    GAO Xiang, LIU Shanjun, WU Lixin, et al. The variation of microwave brightness temperature of granite pressed under weak background radiation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(2‏): 1369-1381.
    [19]
    GAO Xiang,LIU Shanjun,WU Lixin,et al. The anisotropy and polarization of stress-induced microwave radiation changes in granite and their significance for seismic remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing,2021,59(9):7603-7617. doi: 10.1109/TGRS.2020.3034126
    [20]
    仰云峰,申宝剑,腾格尔,等. 有机质反射率的数字图像实现方法[J]. 石油实验地质,2017,39(4):562-566. doi: 10.11781/sysydz201704562

    YANG Yunfeng,SHEN Baojian,Tenger,et al. Determination of reflectance of organic matter by digital image processing[J]. Petroleum Geology & Experiment,2017,39(4):562-566. doi: 10.11781/sysydz201704562
    [21]
    刘吉平. 遥感原理及遥感信息分析基础[M]. 武汉: 武汉大学出版社, 2012.

    LIU Jiping. Principle of remote sensing and basis of remote sensing information analysis[M]. Wuhan: Wuhan University Press, 2012.
    [22]
    高祥,熊伟,徐金辉,等. 粉砂岩失稳过程的红外高温点聚集异常[J]. 有色金属科学与工程,2016,7(1):68-73. doi: 10.13264/j.cnki.ysjskx.2016.01.014

    GAO Xiang,XIONG Wei,XU Jinhui,et al. Abnormal aggregation of infrared high temperature points in process of siltstone failure[J]. Nonferrous Metals Science and Engineering,2016,7(1):68-73. doi: 10.13264/j.cnki.ysjskx.2016.01.014
    [23]
    张瑞芳,黄泽纯,洪安东,等. 利用样方分析小微地震空间分布模式[J]. 测绘与空间地理信息,2018,41(6):21-24. doi: 10.3969/j.issn.1672-5867.2018.06.007

    ZHANG Ruifang,HUANG Zechun,HONG Andong,et al. Exploring spatial distribution pattern of small earthquakes using quadrat analysis[J]. Geomatics & Spatial Information Technology,2018,41(6):21-24. doi: 10.3969/j.issn.1672-5867.2018.06.007
    [24]
    高祥,刘善军,黄建伟,等. 应变率对岩石变形过程声发射特征的影响[J]. 岩石力学与工程学报,2018,37(4):887-897. doi: 10.13722/j.cnki.jrme.2017.0939

    GAO Xiang,LIU Shanjun,HUANG Jianwei,et al. The influence of strain rate on AE characteristics during rock deformation[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(4):887-897. doi: 10.13722/j.cnki.jrme.2017.0939
    [25]
    葛世荣,郝尚清,张世洪,等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术,2020,48(7):28-46. doi: 10.13199/j.cnki.cst.2020.07.002

    GE Shirong,HAO Shangqing,ZHANG Shihong,et al. Status of intelligent coal mining technology and potential key technologies in China[J]. Coal Science and Technology,2020,48(7):28-46. doi: 10.13199/j.cnki.cst.2020.07.002
    [26]
    杨春雨,袁晓光. 煤矿井下巷道变形巡检视频异常检测方法[J]. 工矿自动化,2021,47(2):13-17. doi: 10.13272/j.issn.1671-251x.17702

    YANG Chunyu,YUAN Xiaoguang. Anomaly detection method of inspection video for coal mine underground roadway deformation[J]. Industry and Mine Automation,2021,47(2):13-17. doi: 10.13272/j.issn.1671-251x.17702
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (246) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return