FAN Sihan, YANG Wei, LIU Junbo. Analysis of electromagnetic wave energy safety of underground metal structure near-field coupled large loop transmitting antenna[J]. Journal of Mine Automation,2022,48(6):118-127. DOI: 10.13272/j.issn.1671-251x.2022030093
Citation: FAN Sihan, YANG Wei, LIU Junbo. Analysis of electromagnetic wave energy safety of underground metal structure near-field coupled large loop transmitting antenna[J]. Journal of Mine Automation,2022,48(6):118-127. DOI: 10.13272/j.issn.1671-251x.2022030093

Analysis of electromagnetic wave energy safety of underground metal structure near-field coupled large loop transmitting antenna

More Information
  • Received Date: March 28, 2022
  • Revised Date: May 30, 2022
  • Available Online: April 23, 2022
  • When the metal structures distributed in the underground roadway are in the near-field of the large loop transmitting antenna, they will couple the electromagnetic wave energy of the large loop transmitting antenna. Once the metal structure has a breakpoint and friction occurs, it may produce friction discharge spark and ignite gas. This poses a threat to the safety of coal mine. In order to solve this problem, the safety of electromagnetic wave energy of underground metal structure near-field coupled large loop transmitting antenna is analyzed from two aspects of near-field coupling risk coefficient and safe distance. By establishing the equivalent circuit of electromagnetic wave energy of metal structure near-field coupled large loop transmitting antenna, the expressions of near-field coupling risk coefficient and safe distance between metal structure and large loop transmitting antenna are derived. The influence of the radius of the large loop transmitting antenna, the radius of the equivalent receiving coil of the metal structure, the friction discharge spark load and the distance between the metal structure and the large loop transmitting antenna on the near-field coupling risk coefficient and the safe distance are analyzed. The simulation results show that the near-field coupling risk coefficient increases slightly at first and then decreases slightly or increases all the time with the increase of the radius of the large loop transmitting antenna. Under certain conditions, the friction discharge spark load can make the near-field coupling risk coefficient reach the peak value. When the radius of the large loop transmitting antenna is greater than or equal to the radius of the equivalent receiving coil of the metal structure, the near-field coupling risk coefficient at the peak value may exceed the critical value 0.46 of the near-field coupling risk coefficient. This may cause danger. When the radius of the large loop transmitting antenna is smaller than the radius of equivalent receiving coil of the metal structure, the near-field coupling risk coefficient at the peak value is less than the critical value 0.46 in most cases. This will not cause danger in most cases. Under certain conditions, the radius of the large loop transmitting antenna can make the near-field coupling risk coefficient reach the peak value. The near-field coupling risk coefficient at the peak value first increases and then decreases with the increase of the radius of equivalent receiving coil of the metal structure. It is more likely to exceed the critical value 0.46 of the near-field coupling risk coefficient, which is likely to cause danger in the gas environment. The safe distance increases with the increase of the radius of the large loop transmitting antenna. The safety of the electromagnetic wave energy on the friction discharge spark load decreases with the increase of the radius of the large loop transmitting antenna. When the radius of the large loop transmitting antenna is greater than or equal to the radius of the equivalent receiving coil of the metal structure, the safe distance increases with the increase of the radius of the equivalent receiving coil of the metal structure. The safety of the electromagnetic wave energy on the friction discharge spark load decreases with the increase of the radius of the equivalent receiving coil of the metal structure. When the radius of the large loop transmitting antenna is smaller than the radius of the equivalent receiving coil of the metal structure, the safe distance first increases slowly and then decreases with the increase of the radius of the equivalent receiving coil of the metal structure. The safety of the electromagnetic wave energy on the friction discharge spark load first decreases and then increases with the increase of the radius of the equivalent receiving coil of the metal structure.
  • [1]
    彭霞. 矿井电磁波辐射能量对瓦斯安全性的影响[J]. 煤炭学报,2013,38(4):542-547.

    PENG Xia. Electromagnetic wave radiation energy influences on safety of gas in coal mine[J]. Journal of China Coal Society,2013,38(4):542-547.
    [2]
    柳玉磊. 电磁波功率与煤矿瓦斯爆炸的关系探讨[D]. 北京: 煤炭科学研究总院, 2008.

    LIU Yulei. Discussion on the relationship between electromagnetic waves power and coal mine gas explosion[D]. Beijing: China Coal Research Institute, 2008.
    [3]
    GB 3836.1—2010 爆炸性环境 第1部分: 设备 通用要求[S].

    GB 3836.1-2010 Explosive atmospheres part 1: equipment general requirements[S].
    [4]
    EXCELL P S. Choosing threshold levels for electromagnetic hazards[J]. IEEE Technology and Society Magazine,2002,21(4):32-39. DOI: 10.1109/MTAS.2003.1166565
    [5]
    刘晓阳,马新彦,刘坤,等. 矿井5G电磁波辐射能量安全性研究[J]. 工矿自动化,2021,47(7):85-91.

    LIU Xiaoyang,MA Xinyan,LIU Kun,et al. Research on the safety of 5G electromagnetic wave radiation energy in coal mine[J]. Industry and Mine Automation,2021,47(7):85-91.
    [6]
    刘晓阳,马新彦,田子建,等. 井下金属结构等效接收天线的放电火花安全性研究[J]. 工矿自动化,2021,47(9):126-130.

    LIU Xiaoyang,MA Xinyan,TIAN Zijian,et al. Research on discharge spark safety of equivalent receiving antenna of underground metal structure[J]. Industry and Mine Automation,2021,47(9):126-130.
    [7]
    孙继平,贾倪. 矿井电磁波能量安全性研究[J]. 中国矿业大学学报,2013,42(6):1002-1008. DOI: 10.3969/j.issn.1000-1964.2013.06.018

    SUN Jiping,JIA Ni. Safety study of electromagnetic wave energy in coal mine[J]. Journal of China University of Mining & Technology,2013,42(6):1002-1008. DOI: 10.3969/j.issn.1000-1964.2013.06.018
    [8]
    KRAUS J D, MARHEFKA R J. Antennas: for all application[M]. 3rd ed. Beijing: Publishing House of Electronics Industry, 2008.
    [9]
    朱诚. 基于无线胶囊内窥镜系统的环形天线的设计与研究[D]. 南京: 南京邮电大学, 2019.

    ZHU Cheng. Design of loop antenna for wireless capsule endoscope system[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019.
    [10]
    冯柳. 煤矿井下磁耦合谐振式无线电能传输的研究[D]. 北京: 中国矿业大学(北京), 2020.

    FENG Liu. Research on magnetically coupled resonance wireless power transmission in coal mine[D]. Beijing: China University of Mining & Technology-Beijing, 2020.
    [11]
    傅文珍,张波,丘东元,等. 自谐振线圈耦合式电能无线传输的最大效率分析与设计[J]. 中国电机工程学报,2009,29(18):21-26. DOI: 10.3321/j.issn:0258-8013.2009.18.004

    FU Wenzhen,ZHANG Bo,QIU Dongyuan,et al. Maximum efficiency analysis and design of self-resonance coupling coils for wireless power transmission system[J]. Proceedings of the CSEE,2009,29(18):21-26. DOI: 10.3321/j.issn:0258-8013.2009.18.004
    [12]
    吴亚飞. 毫米波天线阵近场电磁波的汇聚与调控研究[D]. 成都: 电子科技大学, 2020.

    WU Yafei. Research on near-field electromagnetic focusing and steering of millimeter-wave antenna array[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
    [13]
    冯林, 杨显清, 王园, 等. 电磁场与电磁波[M]. 北京: 机械工业出版社, 2004.

    FENG Lin, YANG Xianqing, WANG Yuan, et al. Electromagnetic fields and electromagnetic waves[M]. Beijing: China Machine Press, 2004.
    [14]
    田子建,曹阳阳,樊京,等. 磁耦合谐振式无线电能传输系统功率优化[J]. 工矿自动化,2016,42(6):33-37.

    TIAN Zijian,CAO Yangyang,FAN Jing,et al. Transmission power optimization of magnetic resonance coupling wireless power transmission system[J]. Industry and Mine Automation,2016,42(6):33-37.
    [15]
    邓亚峰. 无线供电技术[M]. 北京: 冶金工业出版社, 2013.

    DENG Yafeng. Wireless power technology[M]. Beijing: Metallurgical Industry Press, 2013.
    [16]
    陈绥毓. 嵌入式系统磁谐振无线电能传输装置优化设计研究[D]. 长沙: 国防科学技术大学, 2016.

    CHEN Suiyu. Optimal design of magnetically coupled resonant wireless power transfer system for embedded systems[D]. Changsha: National University of Defense Technology, 2016.
  • Related Articles

    [1]ZHANG Xuhui, MA Bing, YANG Wenjuan, DONG Zheng, LI Yuyang. Research on denoising of uneven lighting images in coal mine underground[J]. Journal of Mine Automation, 2024, 50(2): 1-8. DOI: 10.13272/j.issn.1671-251x.2023110090
    [2]DOU Xueli, NIU Yonggang, YIN Peng, LI Jingsheng, LUAN Liangliang, LAN Xiang. Measurement and analysis of underground ultra wide band signal path loss[J]. Journal of Mine Automation, 2020, 46(10): 99-103. DOI: 10.13272/j.issn.1671 -251x.17667
    [3]WANG Wei. Underground precise positioning algorithm based on Kalman filter and weighted LM algorithm[J]. Journal of Mine Automation, 2019, 45(11): 5-9. DOI: 10.13272/j.issn.1671-251x.17500
    [4]ZHANG Shen, ZHANG Zhen. Design of underground voice transmission system by visible light[J]. Journal of Mine Automation, 2016, 42(8): 17-20. DOI: 10.13272/j.issn.1671-251x.2016.08.005
    [5]LIU Shulun, WANG Shuse. Underground personnel positioning system based on ultra wideband technology[J]. Journal of Mine Automation, 2014, 40(10): 81-83. DOI: 10.13272/j.issn.1671-251x.2014.10.022
    [6]DENG Jianzhi, CHENG Xiaohui. Transceiver of underground location system based on visible light color division duplex[J]. Journal of Mine Automation, 2014, 40(7): 1-4. DOI: 10.13272/j.issn.1671-251x.2014.07.001
    [7]CHEN Yan, LIU Zhiqiang. Design of underground lighting pre-warning system[J]. Journal of Mine Automation, 2014, 40(6): 18-20. DOI: 10.13272/j.issn.1671-251x.2014.06.005
    [8]SHANG Changchun, MA Hongwei, CHEN Yanbing. Image preprocessing method for underground variable lighting conditions[J]. Journal of Mine Automation, 2014, 40(3): 79-82. DOI: 10.13272/j.issn.1671-251x.2014.03.021
    [9]GAO Yun-guang. Design of Underground Lighting Protection System Based on PLC[J]. Journal of Mine Automation, 2010, 36(3): 25-28.
    [10]CHEN Li-la. Study on Full-function Traffic Light Based on EDA[J]. Journal of Mine Automation, 2000, 26(4): 20-21.
  • Cited by

    Periodical cited type(16)

    1. 付京. 煤矿安全监控多系统融合技术探究. 现代工业经济和信息化. 2023(01): 76-77+131 .
    2. 荆诚,朱沙沙. 煤矿井下移动端应用融合框架的设计和应用. 煤炭技术. 2023(07): 184-186 .
    3. 郭明明. 基于无线传感器网格的煤矿安全自动监控系统. 自动化与仪器仪表. 2022(02): 228-231 .
    4. 刘鸿燕,裴灵. 基于GPRS的地质钻探多参量融合监控系统设计. 自动化技术与应用. 2022(05): 75-79 .
    5. 罗辉,王晓南,栗浩. 一种基于深度视觉的井下充填智能监控方法. 电脑编程技巧与维护. 2022(10): 131-133 .
    6. 贺耀宜,高文,杨耀,荆诚,朱沙沙,陈醒. 智能矿山多元监控信息融合与联动研究. 工矿自动化. 2022(11): 11-19 . 本站查看
    7. 何云文,任文华. 井下多系统融合及应急联动的安全监控系统方案设计. 煤炭技术. 2021(01): 180-182 .
    8. 张明,何云文,付蓉. 井下融合及多系统联动技术在黄白茨煤矿应用与实践. 煤炭技术. 2021(02): 169-172 .
    9. 申乾. 红柳林煤矿安全监控系统升级改造及应用. 内蒙古煤炭经济. 2021(04): 79-81 .
    10. 胡宏泽,杜志刚,储楠,罗克. 基于智慧矿山平台的人员定位系统关键技术. 煤矿安全. 2021(11): 134-138 .
    11. 郭泰,颜铤. 基于物联网技术的矿井安全动态信息监测系统研究. 能源与环保. 2021(12): 228-233+239 .
    12. 李苗,邓玲霞,张丽丽. 多系统融合的煤矿安全生产智能监控与诊断系统的研究与应用. 河南科技. 2021(26): 74-76 .
    13. 郑学召,郭行,郭军,王宝元. 矿井广播系统及其在煤矿应急通信中的应用探讨. 工矿自动化. 2020(01): 32-37 . 本站查看
    14. 尹延华,杨林,付梅. 工业大数据技术助力煤矿安全生产管控初探. 煤炭加工与综合利用. 2019(06): 122-125+128 .
    15. 陈汉章,汪洋. 基于GIS的煤矿安全监控系统应急联动子系统的设计与实现. 矿业研究与开发. 2019(07): 121-125 .
    16. 贺耀宜,王海波. 基于物联网的可融合性煤矿监控系统研究. 工矿自动化. 2019(08): 13-18 . 本站查看

    Other cited types(7)

Catalog

    Article Metrics

    Article views (221) PDF downloads (20) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return