HONG Yan, ZHU Danping, GONG Pingshun. Retinex mine image enhancement algorithm based on TopHat weighted guided filtering[J]. Journal of Mine Automation,2022,48(8):43-49. DOI: 10.13272/j.issn.1671-251x.2022020029
Citation: HONG Yan, ZHU Danping, GONG Pingshun. Retinex mine image enhancement algorithm based on TopHat weighted guided filtering[J]. Journal of Mine Automation,2022,48(8):43-49. DOI: 10.13272/j.issn.1671-251x.2022020029

Retinex mine image enhancement algorithm based on TopHat weighted guided filtering

More Information
  • Received Date: February 17, 2022
  • Revised Date: August 08, 2022
  • Available Online: June 01, 2022
  • The uneven distribution of light sources and weak light in coal mines lead to low brightness and unclear image. The traditional Retinex algorithm has the problems of detail loss, edge blur and halo when processing low illumination images of coal mines. In order to solve the above problems, a new algorithm named THWGIF-Retinex based on TopHat weighted guided filtering is proposed to enhance the mine image. Firstly, the image is transformed from RGB space to HSV space. Then the image is separated into three channel components of hue, saturation and brightness. Secondly, the TopHat transform is used to improve the weight factor of the weighted guided filtering. The illumination component of the image is extracted from the brightness component. The edge enhancement of the brightness component is realized. Thirdly, the illumination component and the saturation component are corrected by adopting a self-adaptive gamma correction function. The reflection component is obtained from the illumination component by the Retinex algorithm. The details and color effect of the image light source are further improved. Finally, the hue component, the corrected saturation component and the reflection component are combined and converted to RGB space to obtain an enhanced mine image. The THWGIF-Retinex algorithm, multi-scale Retinex (MSR) algorithm and weighted guided filtering Retinex (WGIF-Retinex) algorithm are compared and verified from subjective evaluation and objective evaluation. The subjective evaluation results show that the original image of low illumination without strong light is enhanced by the THWGIF-Retinex algorithm. The color reproduction degree of the image is higher, the image edge is clearer, and the visual effect is obviously enhanced. The THWGIF-Retinex algorithm has a good effect on halo reduction for the mine low-illumination original image with strong light. The THWGIF-Retinex algorithm is better than the WGIF-Retinex algorithm in restoring the details and clarity of dark areas. The objective evaluation results show that the information entropy, the average gradient, the standard deviation and the no-reference structural sharpness (NRSS) of the image enhanced by the THWGIF-Retinex algorithm are increased by 12.50%, 109.07%, 52.44% and 45.46% respectively for the low illumination images without strong light. Compared with the MSR algorithm, the information entropy, average gradient, standard deviation and NRSS of the image enhanced by the THWGIF-Retinex algorithm are increased by 1.24%, 81.44%, 18.23% and 36.67% respectively for the mine low illumination image with strong light. Compared with the WGIF-Retinex algorithm, the THWGIF-Retinex algorithm has lower information entropy. However, the average gradient and NRSS are improved by 72.34% and 23.87% respectively.
  • [1]
    尹小英. 浅析智慧矿山综合监控系统设计[J]. 内蒙古煤炭经济,2020(20):127-128. DOI: 10.3969/j.issn.1008-0155.2020.20.063

    YIN Xiaoying. Brief analysis on the design of intelligent mine comprehensive monitoring system[J]. Inner Mongolia Coal Economy,2020(20):127-128. DOI: 10.3969/j.issn.1008-0155.2020.20.063
    [2]
    刘晓阳,乔通,乔智. 基于双边滤波和Retinex算法的矿井图像增强方法[J]. 工矿自动化,2017,43(2):49-54.

    LIU Xiaoyang,QIAO Tong,QIAO Zhi. Image enhancement method of mine based on bilateral filtering and Retinex algorithm[J]. Industry and Mine Automation,2017,43(2):49-54.
    [3]
    张立亚,郝博南,孟庆勇,等. 基于HSV空间改进融合Retinex算法的井下图像增强方法[J]. 煤炭学报,2020,45(增刊1):532-540. DOI: 10.13225/j.cnki.jccs.2020.0514

    ZHANG Liya,HAO Bonan,MENG Qingyong,et al. Method of image enhancement in coal mine based on improved Retinex fusion algorithm in HSV space[J]. Journal of China Coal Society,2020,45(S1):532-540. DOI: 10.13225/j.cnki.jccs.2020.0514
    [4]
    HU Haokun, CAO Wei, YUAN Jieyu, et al. A low-illumination image enhancement algorithm based on morphological-Retinex(MR) operator[C].IEEE/ACIS 6th International Conference on Big Data, Cloud Computing, and Data Science, Zhuhai, 2021: 66-72.
    [5]
    智宁,毛善君,李梅. 基于照度调整的矿井非均匀照度视频图像增强算法[J]. 煤炭学报,2017,42(8):2190-2197.

    ZHI Ning,MAO Shanjun,LI Mei. Enhancement algorithm based on illumination adjustment for non-uniform illuminance video images in coal mine[J]. Journal of China Coal Society,2017,42(8):2190-2197.
    [6]
    李晓宇,吕进来,郝晓丽. 一种改进的Retinex矿井图像增强算法[J]. 科学技术与工程,2020,20(29):12028-12034. DOI: 10.3969/j.issn.1671-1815.2020.29.030

    LI Xiaoyu,LYU Jinlai,HAO Xiaoli. An improved enhancement algorithm of mine image based on Retinex[J]. Science Technology and Engineering,2020,20(29):12028-12034. DOI: 10.3969/j.issn.1671-1815.2020.29.030
    [7]
    MU Qi,WANG Xinyue,WEI Yanyan,et al. Low and non-uniform illumination color image enhancement using weighted guided image filtering[J]. Computational Visual Media,2021,7(4):529-546. DOI: 10.1007/s41095-021-0232-x
    [8]
    WANG Guoqing,WANG Jun,LI Ming,et al. Hand vein image enhancement based on multi-scale top-hat transform[J]. Cybernetics and Information Technologies,2016,16(2):125-134. DOI: 10.1515/cait-2016-0025
    [9]
    SHI Haiyan,NGAIMING K,GU Fang,et al. Gradient-guided color image contrast and saturation enhancement[J]. International Journal of Advanced Robotic Systems,2017,14(3):1-5.
    [10]
    李鹏飞,何小海,卿粼波,等. 暗通道融合亮通道优化的夜间图像去雾算法[J]. 液晶与显示,2021,36(4):596-604. DOI: 10.37188/CJLCD.2020-0208

    LI Pengfei,HE Xiaohai,QING Linbo,et al. Nighttime dehazing algorithm of dark channel and bright channel fusion optimization[J]. Chinese Journal of Liquid Crystals and Displays,2021,36(4):596-604. DOI: 10.37188/CJLCD.2020-0208
    [11]
    刘颖,刘佳琳,刘卫华,等. 基于加权引导滤波的Retinex刑侦图像增强[J]. 西安邮电大学学报,2018,23(5):30-36.

    LIU Ying,LIU Jialin,LIU Weihua,et al. A Retinex criminal investigation image enhanced algorithm based on weighted guided filtering[J]. Journal of Xi'an University of Posts and Telecommunications,2018,23(5):30-36.
    [12]
    许凤麟,苗玉彬,张铭. 基于彩色加权引导滤波−Retinex算法的导航图像增强[J]. 上海交通大学学报,2019,53(8):921-927.

    XU Fenglin,MIAO Yubin,ZHANG Ming. Navigation image enhancement based on color weighted guided image filtering-Retinex algorithm[J]. Journal of Shanghai Jiaotong University,2019,53(8):921-927.
    [13]
    汤子麟,刘翔,张星. 光照不均匀图像的自适应增强算法[J]. 计算机工程与应用,2021,57(21):216-223. DOI: 10.3778/j.issn.1002-8331.2010-0368

    TANG Zilin,LIU Xiang,ZHANG Xing. Adaptive enhancement algorithm for non-uniform illumination images[J]. Computer Engineering and Applications,2021,57(21):216-223. DOI: 10.3778/j.issn.1002-8331.2010-0368
    [14]
    HERRERA-ARELLANO M A,PEREGRINA-BARRETO H,TEROL-VILLALOBOS I. Visible-NIR image fusion based on top-hat transform[J]. IEEE Transactions on Image Processing,2021,30:4962-4972. DOI: 10.1109/TIP.2021.3077310
    [15]
    SENGUPTA D,BISWAS A,GUPTA P. Non-linear weight adjustment in adaptive gamma correction for image contrast enhancement[J]. Multimedia Tools and Applications,2021,80(3):3835-3862. DOI: 10.1007/s11042-020-09583-1
    [16]
    龙鑫,何国田. 基于多层融合和细节恢复的图像增强方法[J]. 计算机应用研究,2020,37(2):584-587.

    LONG Xin,HE Guotian. Image enhancement method based on multi-layer fusion and detail restoration[J]. Application Research of Computers,2020,37(2):584-587.
    [17]
    WANG Ping,WANG Zhiwen,LYU Dong,et al. Low illumination color image enhancement based on Gabor filtering and Retinex theory[J]. Multimedia Tools and Applications,2021,80(4):17705-17719.
    [18]
    ZHAO Chaoyue,JIA Ruisheng,LIU Qingming,et al. Image dehazing method via a cycle generative adversarial network[J]. IET Image Processing,2020,14(2):4240-4247.
    [19]
    陈宏辉,胡小平,彭向前. 基于改进MSR的小波变换图像增强算法[J]. 计算机科学与应用,2021,11(4):1149-1156. DOI: 10.12677/CSA.2021.114118

    CHEN Honghui,HU Xiaoping,PENG Xiangqian. Wavelet transform image enhancement algorithm based on improved MSR[J]. Computer Science and Application,2021,11(4):1149-1156. DOI: 10.12677/CSA.2021.114118
    [20]
    景文博,邹欢欢,张家铭,等. 基于相位差异法的简易光学系统的图像复原方法[J]. 光子学报,2019,48(9):87-98.

    JING Wenbo,ZOU Huanhuan,ZHANG Jiaming,et al. Simple optical system image restoration method based on phase diversity[J]. Acta Photonica Sinica,2019,48(9):87-98.
  • Related Articles

    [1]GAI Yonggang. A defogging algorithm for coal mine underground images based on dark channel guided filtering and lighting correction[J]. Journal of Mine Automation, 2024, 50(6): 89-95. DOI: 10.13272/j.issn.1671-251x.2024030048
    [2]MU Qi, GE Xiangfu, WANG Xinyue, LI Lei, LI Zhanli. A coal mine underground image enhancement method based on multi-scale gradient domain guided image filtering[J]. Journal of Mine Automation, 2024, 50(6): 79-88, 111. DOI: 10.13272/j.issn.1671-251x.2023080126
    [3]ZHANG Hong, SUO Tingfeng, SONG Wanying. A mine image enhancement method based on structural texture decomposition[J]. Journal of Mine Automation, 2024, 50(3): 56-64. DOI: 10.13272/j.issn.1671-251x.2023100005
    [4]LI Zhenglong, WANG Hongwei, CAO Wenyan, ZHANG Fujing, WANG Yuheng. A method for enhancing low light images in coal mines based on Retinex model containing noise[J]. Journal of Mine Automation, 2023, 49(4): 70-77. DOI: 10.13272/j.issn.1671-251x.2022080047
    [5]FAN Zhanwen, LIU Bo. Research on adaptive enhancement technology of low illumination image based on improved Retinex[J]. Journal of Mine Automation, 2021, 47(S1): 126-130.
    [6]MO Shupei, TANG Jin, DU Yongwan, CHEN Ming. Underground adaptive positioning algorithm based on SAPSO-BP neural network[J]. Journal of Mine Automation, 2019, 45(7): 80-85. DOI: 10.13272/j.issn.1671-251x.2019010066
    [7]LIU Xiaoyang, QIAO Tong, QIAO Zhi. Image enhancement method of mine based on bilateral filtering and Retinex algorithm[J]. Journal of Mine Automation, 2017, 43(2): 49-54. DOI: 10.13272/j.issn.1671-251x.2017.02.011
    [8]LI Lu, MA Shao-yi. Construction of Mine-map Graph Correction System Based on MapX[J]. Journal of Mine Automation, 2009, 35(11): 115-116.
    [9]ZHAO Xiao-xia~(, 2), WANG Ru-lin~. Enhancement Algorithm of Fog-degraded Image Based on Multiscale Retinex[J]. Journal of Mine Automation, 2009, 35(10): 62-66.
    [10]ZHANG Xiao-guang, XU Zhao, WANG Gang, LIU Wei-dong. Application of Self-adaptive Filter Based on DSP in Mine Communicatio[J]. Journal of Mine Automation, 2007, 33(2): 36-38.
  • Cited by

    Periodical cited type(12)

    1. 庞义辉,关书方,姜志刚,白云,李鹏. 综放工作面围岩控制与智能化放煤技术现状及展望. 工矿自动化. 2024(09): 20-27 . 本站查看
    2. 杨艺,王圣文,崔科飞,费树岷. 基于模糊深度Q网络的放煤智能决策方法. 工矿自动化. 2023(04): 78-85 . 本站查看
    3. 杨艺,高阳,罗开成,王科平,费树岷. 基于YADE的综放工作面进刀放煤三维仿真. 煤矿安全. 2022(01): 167-173 .
    4. 刘军锋,高亮亮,尹春雷. 智能放煤技术在某矿综放工作面的研究与应用. 煤炭技术. 2022(02): 58-60 .
    5. 罗开成,高阳,杨艺,常亚军,袁瑞甫. 基于均值偏差奖赏函数的放煤口控制策略研究. 煤炭工程. 2022(09): 105-111 .
    6. 杨艺,李庆元,李化敏,李东印,杨延麟,费树岷. 基于批量式强化学习的群组放煤智能决策研究. 煤炭科学技术. 2022(10): 188-197 .
    7. 聂天文,韩金博. 倾斜特厚煤层工作面初次放顶方案设计. 陕西煤炭. 2021(03): 101-105 .
    8. 王启鑫. 智能化放顶煤开采的精确放煤控制技术. 当代化工研究. 2021(14): 67-68 .
    9. 高有进,杨艺,常亚军,张幸福,李国威,连东辉,崔科飞,武学艺,魏宗杰. 综采工作面智能化关键技术现状与展望. 煤炭科学技术. 2021(08): 1-22 .
    10. 李伟. 综放开采智能化控制系统研发与应用. 煤炭科学技术. 2021(10): 128-135 .
    11. 张学亮,刘清,郎瑞峰,邵斌,吴少伟. 厚煤层智能放煤工艺及精准控制关键技术研究. 煤炭工程. 2020(09): 1-6 .
    12. 李长营. 综采放顶煤工艺参数仿真优化. 当代化工研究. 2020(18): 144-145 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (276) PDF downloads (47) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return