TIAN Jie, TIAN Zhuang, GUO Hongfei, et al. Optimization design of magnetic flux circuit for mine wire rope damage detection[J]. Journal of Mine Automation,2022,48(3):118-122. DOI: 10.13272/j.issn.1671-251x.2021120013
Citation: TIAN Jie, TIAN Zhuang, GUO Hongfei, et al. Optimization design of magnetic flux circuit for mine wire rope damage detection[J]. Journal of Mine Automation,2022,48(3):118-122. DOI: 10.13272/j.issn.1671-251x.2021120013

Optimization design of magnetic flux circuit for mine wire rope damage detection

More Information
  • Received Date: December 02, 2021
  • Revised Date: March 05, 2022
  • Available Online: March 04, 2022
  • The magnetic flux leakage(MFL) detection method is the most widely used method for detecting the mine wire rope damage, and there is no research on the influence of magnetic noise signal in magnetic flux circuit on the MFL detection signal of wire rope damage. Based on the principle of MFL detection for wire rope damage, the equivalent magnetic circuit model of MFL detection is constructed, and the magnetic field distribution of the magnetic flux circuit is simulated by Ansoft Maxwell finite element software. The results show that there are many magnetic noise circuits in the magnetic flux circuit besides the main magnetic flux and the MFL of wire rope damage, which are easy to interfere with the MFL detection signal of wire rope. The MFL of armature magnetic conduction path and the coupling MFL between permanent magnets on both sides and air medium have the greatest influence. Based on the simulation results, the magnetic flux circuit is optimized. The contact part between the armature and the permanent magnet is changed from a right-angle structure to a rounded structure to reduce the MFL at this part, increase the main magnetic flux in the armature magnetic conduction path, and then enhance the MFL detection signal of wire rope damage. The annular magnetic bridge circuit shielding device is designed with high magnetic conductivity material and installed in the damage MFL detection area so as to guide the direction of the coupling MFL between the permanent magnets on both sides and the air medium, and reduce the influence of the coupling MFL on the detection of wire rope damage MFL. The experimental results show that after the optimization of the magnetic flux circuit, the characteristics of the wire rope damage detection signal are more obvious than those before the optimization, and the collected signal increases from 6.14 mV to 18.59 mV. It is verified that the optimization scheme can improve the transmission efficiency of the magnetic flux circuit, have the aggregation and enhancement effect on the damage MFL, and reduce the superposition effect of the permanent magnet-air coupling MFL and the wire rope damage MFL, which is conducive to improving the accuracy of wire rope damage detection.
  • [1]
    牟帅,陈志平,金嘉蕾,等. 钢丝绳无损检测技术研究进展[J]. 机电工程,2014,31(6):707-710.

    MOU Shuai,CHEN Zhiping,JIN Jialei,et al. Progress on nondestructive testing technology of wire ropes[J]. Journal of Mechanical & Electrical Engineering,2014,31(6):707-710.
    [2]
    何吉坤. 矿用钢丝绳在线检测系统的研究与设计[D]. 西安: 西安科技大学, 2015.

    HE Jikun. Research and design of mining wire rope detection system[D]. Xi'an: Xi'an University of Science and Technology, 2015.
    [3]
    KALWA E,PIEKARSKI K. Fundamental of magnetic testing of steel rope[J]. NDT International,1989,22(1):36-43.
    [4]
    张操,朱承建,刘健康. 基于漏磁原理的钢丝绳探伤仪影响因素研究[J]. 工矿自动化,2015,41(5):52-54.

    ZHANG Cao,ZHU Chengjian,LIU Jiankang. Research of impact factors of wire rope flaw detector based on principle of magnetic flux leakage[J]. Industry and Mine Automation,2015,41(5):52-54.
    [5]
    康宜华,黎振捷,杨芸,等. 微小型钢丝绳漏磁检测传感器与仪器[J]. 无损检测,2014,36(5):11-15.

    KANG Yihua,LI Zhenjie,YANG Yun,et al. Mini-micro sensor & device for wire rope MFL testing[J]. Nondestructive Testing,2014,36(5):11-15.
    [6]
    李登蓬,李国平,武博,等. 钢丝绳金属截面积损失型损伤检测传感器设计及仿真分析[J]. 济南大学学报(自然科学版),2019,33(1):37-41.

    LI Dengpeng,LI Guoping,WU Bo,et al. Design and simulation analysis of loss of metallic cross-sectional area detection sensor for wire ropes[J]. Journal of University of Jinan ( Science and Technology),2019,33(1):37-41.
    [7]
    谢菲,孙燕华,姜宵园,等. 矿井提升钢丝绳在线漏磁无损检测装置[J]. 无损探伤,2019,43(1):34-36.

    XIE Fei,SUN Yanhua,JIANG Xiaoyuan,et al. On-line magnetic leakage nondestructive testing device for mine lifting wire rope[J]. Nondestructive Inspection,2019,43(1):34-36.
    [8]
    王红尧,田劼. 基于有限元分析的矿用钢丝绳聚磁检测方法[J]. 煤炭学报,2013,38(增刊1):256-260.

    WANG Hongyao,TIAN Jie. Method of magnetic collect detection for coal mine wire rope base on finite element analysis[J]. Journal of China Coal Society,2013,38(S1):256-260.
    [9]
    时统军,王朋,王博. 矿井提升机钢丝绳张力监测系统设计[J]. 工矿自动化,2014,40(6):103-105.

    SHI Tongjun,WANG Peng,WANG Bo. Design of wirerope tension monitoring system of mine hoist[J]. Industry and Mine Automation,2014,40(6):103-105.
    [10]
    刘利伟,李建朝. 矿井提升机钢丝绳在线无损检测系统的设计及应用[J]. 工矿自动化,2012,38(1):90-92.

    LIU Liwei,LI Jianchao. Design of on-line nondestructive inspection system of steel rope of mine hoist and its application[J]. Industry and Mine Automation,2012,38(1):90-92.
    [11]
    陶德馨,艾丽斯佳. 基于弱磁探伤的钢丝绳无损检测技术[J]. 中国工程机械学报,2009,7(1):96-99.

    TAO Dexin,AI Lisijia. Nondestructive testing technology for wire ropes based on weak magnetic flaw detection[J]. Chinese Journal of Construction Machinery,2009,7(1):96-99.
    [12]
    陈征宇,叶玉龙. 基于ANSYS的电梯钢丝绳失效检测有限元分析[J]. 机电信息,2018(27):69-70. DOI: 10.3969/j.issn.1671-0797.2018.27.037

    CHEN Zhengyu,YE Yulong. Finite element analysis of elevator wire rope failure detection based on ANSYS[J]. Mechanical and Electrical Information,2018(27):69-70. DOI: 10.3969/j.issn.1671-0797.2018.27.037
    [13]
    田劼,周俊莹,王红尧,等. 钢丝绳探伤多回路励磁检测方法研究[J]. 矿业科学学报,2018,3(2):180-185.

    TIAN Jie,ZHOU Junying,WANG Hongyao,et al. Research on multiloop magnetic detection method for steel wire rope detection[J]. Journal of Mining Science and Technology,2018,3(2):180-185.
    [14]
    常用根,江帆,陈潇. 矿井提升装备健康状态监测系统设计[J]. 工矿自动化,2018,44(2):38-42.

    CHANG Yonggen,JIANG Fan,CHEN Xiao. Design of health condition monitoring system of mine hoisting equipment[J]. Industry and Mine Automation,2018,44(2):38-42.
    [15]
    江念,王召巴,陈友兴,等. 电磁超声检测钢板厚度实验的参数优化[J]. 传感技术学报,2015,28(4):498-502. DOI: 10.3969/j.issn.1004-1699.2015.04.008

    JIANG Nian,WANG Zhaoba,CHEN Youxing,et al. The experiment parameters of the steel-sheet thickness measurement by electromagnetic ultrasonic[J]. Chinese Journal of Sensors and Actuators,2015,28(4):498-502. DOI: 10.3969/j.issn.1004-1699.2015.04.008
  • Related Articles

    [1]YAN Guofeng, HUANG Xingli, YAN Zhenguo. Research on exothermic and kinetic characteristics of low-temperature oxidation of preoxidized coal[J]. Journal of Mine Automation, 2022, 48(7): 135-141. DOI: 10.13272/j.issn.1671-251x.2022030032
    [2]YAO Huawei, HE Xiaodong, WANG Zhe. Numerical study of pulverized coal ignition under different oxygen conditions based on solid-gas coupling[J]. Journal of Mine Automation, 2022, 48(3): 107-111, 117. DOI: 10.13272/j.issn.1671-251x.2021090068
    [3]FANG Xiyang, YAO Haifei. Experimental study on the displacement of oxygen in coal with different particle sizes by inert gas[J]. Journal of Mine Automation, 2021, 47(9): 101-107.. DOI: 10.13272/j.issn.1671-251x.17840
    [4]XI Bo, WANG Shi'ao, GUO Jianwei. Design of on-line detection system of mine emulsion concentratio[J]. Journal of Mine Automation, 2020, 46(9): 98-103. DOI: 10.13272/j.issn.1671-251x.2020040023
    [5]ZHANG Suorong, CHEN Jiange. Research of detection technology of metal dust concentratio[J]. Journal of Mine Automation, 2017, 43(3): 57-60. DOI: 10.13272/j.issn.1671-251x.2017.03.013
    [6]XU Xuezhan, MENG Xiangrui, ZOU Yunlong. Coal and gas outburst early-warning technology based on change of gas concentratio[J]. Journal of Mine Automation, 2016, 42(9): 17-21. DOI: 10.13272/j.issn.1671-251x.2016.09.005
    [7]GONG Zhongqiang, LI Jun, ZHANG Shulin, GUO Qinghua. Research of oxygen concentration and temperature detection system[J]. Journal of Mine Automation, 2015, 41(10): 20-23. DOI: 10.13272/j.issn.1671-251x.2015.10.006
    [8]ZHAO Si-hai, WANG Qi, LIU Zhi-qiang. Research Progress of Detection and Automatic Matching Technique for Emulsion Concentratio[J]. Journal of Mine Automation, 2012, 38(8): 30-35.
    [9]WANG Hong-jian, TANG Mao-feng, WANG Xue-ming, LIU Yan, SHENG Nan. Design of Mine-used High-precision Oxygen Sensor with Temperature Compensatio[J]. Journal of Mine Automation, 2012, 38(5): 63-65.
    [10]WU Yong, SONG Lei, QU Nai-rui. Research of Mine-used Blending Device of Emulsion Concentratio[J]. Journal of Mine Automation, 2012, 38(2): 84-87.
  • Cited by

    Periodical cited type(12)

    1. 马丙太,吴昊,周一文,嵇文磊,汪洋,赵德刚. 基于IPTA和SBAS-InSAR的闭坑矿井地表残余变形监测. 能源与环保. 2025(03): 123-128 .
    2. 桂智琛,徐良骥,刘潇鹏,曹宗友. 基于时序InSAR的关闭矿井地表残余沉降监测. 绿色矿山. 2024(01): 54-63 .
    3. 许时昂,吴海波,欧元超,席超强. 采煤沉陷松散层变形研究现状与分析. 科学技术与工程. 2024(17): 6999-7013 .
    4. 郑美楠,邓喀中,郭庆彪,赵若南,秦锡鹏. 淮南矿区关闭矿井地表次生沉陷InSAR监测与规律分析. 武汉大学学报(信息科学版). 2024(08): 1356-1366 .
    5. 刘增波,徐良骥,张坤,刘潇鹏,曹宗友,徐阳. 融合SBAS-InSAR与CS-SVM的矿区地表残余沉降预测模型. 金属矿山. 2024(08): 133-139 .
    6. 姜川,王磊杰,樊高强,李昊,李叶繁,苑雨,张曦. 基于SBAS-InSAR的郑州煤炭矿区地表沉降监测及演化规律分析. 中国煤炭. 2024(10): 158-165 .
    7. 魏勇,吉坤,阎鸣泽,李晅辉,刘迎,李宏,韩斌,戴靠山. 基于RSM-BBD方法的关闭/废弃矿井地热系统长期采热性能研究. 矿业研究与开发. 2024(12): 273-282 .
    8. 张连蓬,梁亮,陈炳乾,胡晋山,于洋,秦璐,余昊,杨家乐,杨宇. 基于SBAS-InSAR技术的关闭矿井地表多维形变时空监测与分析方法. 金属矿山. 2023(01): 83-94 .
    9. 高玉荣,隋刚,张新军,孔嘉嫄,张和生. 遥感方法在宁武煤田煤火识别中的应用. 煤炭科学技术. 2023(05): 133-139 .
    10. 褚召祥. 基于体积法的废弃煤矿水热型热储潜能评估. 工程地质学报. 2023(05): 1696-1710 .
    11. 秦锡鹏,邓喀中,郑美楠,王刘宇. 徐州西部关闭矿井地表次生沉陷监测与分析. 测绘科学. 2022(08): 247-254 .
    12. 梁思语,胡海峰. 基于SBAS-InSAR技术的采空区残余变形规律分析. 中国矿业. 2022(12): 70-78 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (293) PDF downloads (28) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return