Volume 48 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
WANG Lin, FANG Qian, ZHANG Xiaoxia, et al. Intelligent coal mine data warehouse modeling method[J]. Journal of Mine Automation,2022,48(4):5-13.  doi: 10.13272/j.issn.1671-251x.2021120007
Citation: WANG Lin, FANG Qian, ZHANG Xiaoxia, et al. Intelligent coal mine data warehouse modeling method[J]. Journal of Mine Automation,2022,48(4):5-13.  doi: 10.13272/j.issn.1671-251x.2021120007

Intelligent coal mine data warehouse modeling method

doi: 10.13272/j.issn.1671-251x.2021120007
  • Received Date: 2021-12-01
  • Rev Recd Date: 2022-03-22
  • Available Online: 2022-03-05
  • The coal mine massive data has problems such as 'data island', weak correlation, poor data quality due to lack of data management system. It is difficult to make full use of the data and provide analysis and decision-making support for coal mine intelligence. The data warehouse can meet the requirements of multi-source heterogeneous data integration in coal mine, and provide data basis for intelligent application in coal mine. By analyzing the coal mine data types, characteristics and intelligent application requirements of actual data, the intelligent coal mine data warehouse modeling method is studied. Firstly, the layered architecture of intelligent coal mine data warehouse is constructed, and the characteristics of data model of original data layer, detailed data layer, basic index layer, service data layer and public dimension layer are analyzed. Secondly, taking the data of fully mechanized working face as an example, the modeling process of data warehouse is expounded from the aspects of business data analysis, application demand analysis and layered architecture design. Thirdly, the construction method of data model in coal mine data warehouse is introduced. The original data is transformed into data warehouse dimensional model through dimension alignment, dimension association and dimensional index aggregation. The method solves the application problem of coal mine data association in different dimensions. Finally, in order to solve the problem of portability of coal mine data warehouse, the design idea of coal mine parametric data warehouse based on general data warehouse in coal mine industry + parametric ETL (extraction-transformation-load) method is proposed. The platform of coal mine data warehouse in the laboratory environment is set up to process the data of fully mechanized working face of Shanxi Tiandi Wangpo Coal Industry Co., Ltd. The auxiliary mechanism model analysis and visual management cockpit are realized based on the processing data, which verifies the practicability of intelligent coal mine data warehouse. The performance indexes of the original data model and the intelligent coal mine data warehouse are compared. The results show that the data organization, model reuse and iteration difficulty of the intelligent coal mine data warehouse are better than those of the original data model, and the data query response time is shortened by more than 50%.

     

  • loading
  • [1]
    王国法,王虹,任怀伟,等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报,2018,43(2):295-305.

    WANG Guofa,WANG Hong,REN Huaiwei,et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society,2018,43(2):295-305.
    [2]
    韩安. 基于Hadoop的煤矿数据中心架构设计[J]. 工矿自动化,2019,45(8):60-64.

    HAN An. Architecture design of coal mine data center based on Hadoop[J]. Industry and Mine Automation,2019,45(8):60-64.
    [3]
    毛善君,杨乃时,高彦清,等. 煤矿分布式协同“一张图”系统的设计和关键技术[J]. 煤炭学报,2018,43(1):280-286.

    MAO Shanjun,YANG Naishi,GAO Yanqing,et al. Design and key technology research of coal mine distributed cooperative "one map" system[J]. Journal of China Coal Society,2018,43(1):280-286.
    [4]
    王国法,刘峰,孟祥军,等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术,2019,47(8):1-36.

    WANG Guofa,LIU Feng,MENG Xiangjun,et al. Research and practice on intelligent coal mine construction (primary stage)[J]. Coal Science and Technology,2019,47(8):1-36.
    [5]
    高士岗,高登彦,欧阳一博,等. 煤矿智能一体化辅助生产系统及关键技术[J]. 煤炭科学技术,2020,48(7):150-160.

    GAO Shigang,GAO Dengyan,OUYANG Yibo,et al. Mine intelligent integrated auxiliary production system and key technologies[J]. Coal Science and Technology,2020,48(7):150-160.
    [6]
    何敏. 智能煤矿数据治理框架与发展路径[J]. 工矿自动化,2020,46(11):23-27.

    HE Min. Framework and development path of data governance in intelligent coal mine[J]. Industry and Mine Automation,2020,46(11):23-27.
    [7]
    李首滨. 煤炭工业互联网及其关键技术[J]. 煤炭科学技术,2020,48(7):98-108.

    LI Shoubin. Coal industry Internet and its key technologies[J]. Coal Science and Technology,2020,48(7):98-108.
    [8]
    杜毅博,赵国瑞,巩师鑫. 智能化煤矿大数据平台架构及数据处理关键技术研究[J]. 煤炭科学技术,2020,48(7):177-185.

    DU Yibo,ZHAO Guorui,GONG Shixin. Study on big data platform architecture of intelligent coal mine and key technologies of data processing[J]. Coal Science and Technology,2020,48(7):177-185.
    [9]
    吴群英,蒋林,王国法,等. 智慧矿山顶层架构设计及其关键技术[J]. 煤炭科学技术,2020,48(7):80-91.

    WU Qunying,JIANG Lin,WANG Guofa,et al. Top-level architecture design and key technologies of smart mine[J]. Coal Science and Technology,2020,48(7):80-91.
    [10]
    BOJICIC I, MARJANOVIC Z, TURAJLIC N, et al. A comparative analysis of data warehouse data models[C]//The 6th IEEE International Conference on Computers Communications and Control, Oradea, 2016: 151-159.
    [11]
    曾志浩,姚贝,张琼林,等. 基于Hadoop平台的用户行为挖掘[J]. 计算技术与自动化,2015,34(2):100-103. doi: 10.3969/j.issn.1003-6199.2015.02.024

    ZENG Zhihao,YAO Bei,ZHANG Qionglin,et al. User behavior mining based on Hadoop platform[J]. Computing Technology and Automation,2015,34(2):100-103. doi: 10.3969/j.issn.1003-6199.2015.02.024
    [12]
    温国锋,陈立文. 煤矿安全管理数据仓库的建立与应用研究[J]. 中国矿业,2009,18(1):95-97. doi: 10.3969/j.issn.1004-4051.2009.01.027

    WEN Guofeng,CHEN Liwen. On building and applacation of coal mine security management data warehouse[J]. China Mining Magazine,2009,18(1):95-97. doi: 10.3969/j.issn.1004-4051.2009.01.027
    [13]
    INMON W H, LINSTEDT D, ELLIOT S. Data architecture, a primer for the data scientist: big data, data warehouse and data vault[M]. Amsterdam: Morgan Kaufmann, 2015.
    [14]
    赵随海. 铁路列车调度指挥系统数据仓库体系结构的研究[J]. 铁道运输与经济,2018,40(12):55-59.

    ZHAO Suihai. A study on the architecture of data warehouse for the railway train dispatching command system[J]. Railway Transport and Economy,2018,40(12):55-59.
    [15]
    STAVRAKAS Y,GERGATSOULIS M,DOULKERIDIS C,et al. Representingand querying histories of semistructured databases using multidimensional OEM[J]. Information Systems,2003,29(6):461-482.
    [16]
    马宏伟,吴少杰,曹现刚,等. 煤矿综采设备运行状态大数据清洗建模[J]. 工矿自动化,2018,44(11):80-83.

    MA Hongwei,WU Shaojie,CAO Xiangang,et al. Big data cleaning modeling of operation status of coal mine fully-mechanized coal mining equipment[J]. Industry and Mine Automation,2018,44(11):80-83.
    [17]
    高金标,何利力,邹云阳. 基于分布式存储系统的Hive与Hbase的研究[J]. 工业控制计算机,2015,28(12):44-45. doi: 10.3969/j.issn.1001-182X.2015.12.021

    GAO Jinbiao,HE Lili,ZOU Yunyang. Hive and Hbase based on research on hadoop distributed file system[J]. Industrial Control Computer,2015,28(12):44-45. doi: 10.3969/j.issn.1001-182X.2015.12.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(6)

    Article Metrics

    Article views (697) PDF downloads(124) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return