Volume 48 Issue 3
Mar.  2022
Turn off MathJax
Article Contents
LI Wenjing, ZHANG Xinxin, LIN Zhiyong, et al. Mine underground space modeling method based on semantic multi-scale[J]. Journal of Mine Automation,2022,48(3):129-134.  doi: 10.13272/j.issn.1671-251x.2021110012
Citation: LI Wenjing, ZHANG Xinxin, LIN Zhiyong, et al. Mine underground space modeling method based on semantic multi-scale[J]. Journal of Mine Automation,2022,48(3):129-134.  doi: 10.13272/j.issn.1671-251x.2021110012

Mine underground space modeling method based on semantic multi-scale

doi: 10.13272/j.issn.1671-251x.2021110012
  • Received Date: 2021-11-04
  • Rev Recd Date: 2022-03-08
  • Available Online: 2022-03-22
  • In order to solve the problems of semantic-based underground mine entity modeling method, such as the lack of detail level division, the small degree of freedom of model configuration, and the lack of multi-scale fine expression, parametric modeling and semantic multi-scale ideas are applied to the construction of mine multi-level of detail (LOD) model, and a mine underground space modeling method based on semantic multi-scale is proposed. It is determined that the modeling object is the entity element in mine underground space. The modeling objects are divided into roadway model and in-roadway model according to the position of the entity element. The roadway model comprises a roadway main body model and other artificial structure models, and the in-roadway model comprises a mine facility model and an equipment model. The different semantic classes are defined according to the semantic information of the entity elements. The semantic classes are divided into families, and then the families are decomposed into component elements according to their functions. Each semantic class is described by quantifiable indicators such as semantic attributes, geometric attributes, appearance attributes and characteristic attributes. The mine LOD model is designed, which includes six levels of discrete LOD models, namely roadway network model, roadway rough model, roadway fine model, main facility model in roadway, main equipment model in roadway, and other equipment models in roadway. Combining the discrete LOD model with various attributes can clearly show the level of detail and the primary and secondary relationships of the mine LOD model. The mine underground space modeling method based on semantic multi-scale can provide entity element models with different detail richness, reduce the computational complexity of scene rendering and improve the efficiency and flexibility of model construction.

     

  • loading
  • [1]
    谷保泽,邱少杰. 透明化矿山建设关键技术探讨[J]. 工矿自动化,2021,47(增刊1):24-25.

    GU Baoze,QIU Shaojie. Discussion on key technologies for transparent mine construction[J]. Industry and Mine Automation,2021,47(S1):24-25.
    [2]
    张珂,杨应迪,刘学通,等. 矿井通风系统三维模型的构建与应用[J]. 工矿自动化,2020,46(2):59-64.

    ZHANG Ke,YANG Yingdi,LIU Xuetong,et al. Construction and application of three-dimensional model of mine ventilation system[J]. Industry and Mine Automation,2020,46(2):59-64.
    [3]
    LI Wenjing,LI Siyi,LIN Zhiyong,et al. Information modeling of mine working based on BIM technology[J]. Tunnelling and Underground Space Technology,2021,115(3):103978.
    [4]
    张元生. 地上下无缝集成多尺度建模与应用研究[D]. 沈阳: 东北大学, 2010.

    ZHANG Yuansheng. Study on aground-underground seamlessly integrated multi-lod modeling and application[D]. Shenyang: Northeastern University, 2010.
    [5]
    BILJECKI F, ZHAO J, STOTER J E, et al. Revisiting the concept level of detail in 3D city modelling[C]//ISPRS 8th 3DGeoInfo Conference & WG II/2 Workshop, Istanbul, 2013: 63-74.
    [6]
    贾小斌,艾廷华,彭子凤,等. 地理信息语义的LOD表达与相似性度量[J]. 武汉大学学报(信息科学版),2016,41(10):1299-1306.

    JIA Xiaobin,AI Tinghua,PENG Zifeng,et al. The LOD representation and proximity measurement of semantic about geographic information[J]. Geomatics and Information Science of Wuhan University,2016,41(10):1299-1306.
    [7]
    BILJECKI F,LEDOUX H,STOTER J,et al. Formalisation of the level of detail in 3D city modelling[J]. Computers,Environment and Urban Systems,2014,48:1-15. doi: 10.1016/j.compenvurbsys.2014.05.004
    [8]
    BILJECKI F,LEDOUX H,STOTER J. An improved LOD specification for 3D building models[J]. Computers,Environment and Urban Systems,2016,59:25-37. doi: 10.1016/j.compenvurbsys.2016.04.005
    [9]
    SARAN S,OBERAI K,WATE P,et al. Utilities of virtual 3D city models based on CityGML:Various use cases[J]. Journal of the Indian Society of Remote Sensing,2018,46(6):957-972. doi: 10.1007/s12524-018-0755-5
    [10]
    TANG Lei,YING Shen,LI Lin,et al. An application-driven LOD modeling paradigm for 3D building models[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2020,161:194-207. doi: 10.1016/j.isprsjprs.2020.01.019
    [11]
    熊书敏. 地下矿生产可视化管控系统关键技术研究[D]. 长沙: 中南大学, 2012.

    XIONG Shumin. Study on key technologies of underground mine production 3D visual management and control system[D]. Changsha: Central South University, 2012.
    [12]
    李雯静,陈曼丽,任大军. 句法视角下矿山地下空间结构研究与优化[J]. 金属矿山,2022(1):154-161.

    LI Wenjing,CHEN Manli,REN Dajun. Study and optimization of mine underground space structure from syntax perspective[J]. Metal Mine,2022(1):154-161.
    [13]
    RADANOVIC M,KHOSHELHAM K,FRASER C. Geometric accuracy and semantic richness in heritage BIM:A review[J]. Digital Applications in Archaeology and Cultural Heritage,2020,19:e00166. doi: 10.1016/j.daach.2020.e00166
    [14]
    李雯静, 张馨心, 焦宇豪. 基于精细拓扑的矿井排水系统多尺度建模[J/OL]. 金属矿山: 1-9[2022-03-11]. http://kns.cnki.net/kcms/detail/34.1055.TD.20211021.1117.002.html.

    LI Wenjing, ZHANG Xinxin, JIAO Yuhao. Multi-scale modeling of mine drainage system based on detailed topological structure[J/OL]. Metal Mine: 1-9[2022-03-11]. http://kns.cnki.net/kcms/detail/34.1055.TD.20211021.1117.002.html.
    [15]
    李江. 基于语义尺度的矿山多模型构建与不确定性研究[D]. 武汉: 中国地质大学, 2016.

    LI Jiang. Research approach for multiple sequence of three-dimensional models of mine based on semantic scale and uncertain analysis on geology modeling[D]. Wuhan: China University of Geosciences, 2016.
    [16]
    李雯静, 焦宇豪, 邱莉, 等. 基于Dynamo的矿井巷道参数化建模[J/OL]. 金属矿山: 1-11[2022-03-11]. http://kns.cnki.net/kcms/detail/34.1055.TD.20210705.1602.004.html.

    LI Wenjing, JIAO Yuhao, QIU Li, et al. Parametric modeling of mine roadway based on Dynamo[J/OL]. Metal Mine: 1-11[2022-03-11]. http://kns.cnki.net/kcms/detail/34.1055.TD.20210705.1602.004.html.
    [17]
    谢景龙,张得群. 矿山三维巷道的参数化建模及其可视化[J]. 矿山测量,2017,45(5):5-9. doi: 10.3969/j.issn.1001-358X.2017.05.002

    XIE Jinglong,ZHANG Dequn. Parametric modeling and visualization of 3D mine laneway[J]. Mine Surveying,2017,45(5):5-9. doi: 10.3969/j.issn.1001-358X.2017.05.002
    [18]
    WANG Guangbin,ZHANG Zhujing. BIM implementation in handover management for underground rail transit project:A case study approach[J]. Tunnelling and Underground Space Technology,2021,108:103684. doi: 10.1016/j.tust.2020.103684
    [19]
    刘贝. 基于BIM技术的隧道参数化建模及模型应用研究[D]. 青岛: 青岛理工大学, 2019.

    LIU Bei. Parametric modeling and model application of tunnel based on BIM technology[D]. Qingdao: Qingdao University of Technology, 2019.
    [20]
    WANG Yunjia,FU Yongming,FU Erjiang. On 3D geo-visualization of a mine surface plant and mine roadway[J]. Geo-spatial Information Science,2007,10(4):287-292. doi: 10.1007/s11806-007-0098-9
    [21]
    LUEBKE D, REDDY M, COHEN J D, et al. Level of detail for 3D graphics[M]. San Francisco: Morgan Kaufmann, 2003.
    [22]
    ZHU Qing,ZHAO Junqiao,DU Zhiqiang,et al. Quantitative analysis of discrete 3D geometrical detail levels based on perceptual metric[J]. Computers & Graphics,2010,34(1):55-65.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (166) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return