HAO Hongjun, ZHAI Xiaorong, HU Ru, et al. Impact of water accumulation in abandoned mines on adjacent production mines[J]. Journal of Mine Automation,2022,48(4):60-65. DOI: 10.13272/j.issn.1671-251x.2021110008
Citation: HAO Hongjun, ZHAI Xiaorong, HU Ru, et al. Impact of water accumulation in abandoned mines on adjacent production mines[J]. Journal of Mine Automation,2022,48(4):60-65. DOI: 10.13272/j.issn.1671-251x.2021110008

Impact of water accumulation in abandoned mines on adjacent production mines

More Information
  • Received Date: November 02, 2021
  • Revised Date: April 06, 2022
  • Available Online: April 17, 2022
  • The goaf water accumulation of abandoned mine will damage the strength of boundary coal pillar, cause coal pillar failure, and pose a threat to the safety of adjacent production mine. The research on the safety limit of goaf water level after mining damage of coal pillar at mine boundary is not comprehensive. In order to solve the problem, taking East Shaft of Shuoshi Mining Industry of Huaibei Mining Group(Shuoshi East Shaft) and Huaibei Shuanglong Mining Co., Ltd.(Shuanglong Company) as the research objects, this paper analyzes the impact of goaf water in abandoned mine of Shuoshi East Shaft on Shuanglong Company, and puts forward corresponding water disaster prevention measures. The mining damage of coal pillar at mine boundary is studied by theoretical calculation and numerical simulation, and the safety limit of goaf water level is calculated according to the damage results. Based on the Bernoulli equation and the Darcy-Weisbach pipeline flow theory, the drainage capacity of the existing drainage boreholes is calculated and the safety is evaluated. The research results show that under the impact of mining, the damaged width of coal pillar at the mine boundary is about 19 m, the effective width is only 21 m, and the maximum water level difference that can be borne is 33 m. When the water level in the abandoned mine of Shuoshi East Shaft rises to −398 m, the coal pillar may be unstable. The drainage capacity of the existing drainage boreholes in the mine is about 89 m3/h, which is less than the actual abandoned mine water inflow of 160 m3/h. After reaching the limit water level, the goaf water level may continue to rise, and there is a threat of water disaster. The water disaster prevention and control measures such as enlarging the borehole diameter and adding drainage boreholes are proposed. The research results can provide reference for the water disaster prevention and control of abandoned mine under similar conditions.
  • [1]
    武强,李松营. 闭坑矿山的正负生态环境效应与对策[J]. 煤炭学报,2018,43(1):21-32.

    WU Qiang,LI Songying. Positive and negative environmental effects of closed mines and its countermeasures[J]. Journal of China Coal Society,2018,43(1):21-32.
    [2]
    ALHAMED M,WOHNLICH S. Environmental impact of the abandoned coal mines on the surface water and the groundwater quality in the south of Bochum,Germany[J]. Environmental Earth Sciences,2014,72(9):3251-3267. DOI: 10.1007/s12665-014-3230-9
    [3]
    徐德金,邵德盛. 国有煤矿范围内地方小井关闭后诱发的水文地质效应分析[J]. 中国煤炭,2014,40(4):41-44,92. DOI: 10.3969/j.issn.1006-530X.2014.04.013

    XU Dejin,SHAO Desheng. Analysis of hydrologic geology effects induced by closure of local small mines within state-owned mine areas[J]. China Coal,2014,40(4):41-44,92. DOI: 10.3969/j.issn.1006-530X.2014.04.013
    [4]
    翟晓荣,吴基文,王广涛,等. 基于MODFLOW的闭坑矿井水位回升预测[J]. 煤田地质与勘探,2018,46(增刊1):27-32.

    ZHAI Xiaorong,WU Jiwen,WANG Guangtao,et al. MODFLOW-based groundwater rebound forecast in abandoned coal mine[J]. Coal Geology & Exploration,2018,46(S1):27-32.
    [5]
    刘国林,段绪华. 老空、老窑水的充水特征及防治对策[J]. 中国煤炭,2004,30(3):34-35,54. DOI: 10.3969/j.issn.1006-530X.2004.03.012

    LIU Guolin,DUAN Xuhua. Water-filling characteristics of gob water and goaf water and its control measures[J]. China Coal,2004,30(3):34-35,54. DOI: 10.3969/j.issn.1006-530X.2004.03.012
    [6]
    魏久传,肖乐乐,牛超,等. 2001—2013年中国矿井水害事故相关性因素特征分析[J]. 中国科技论文,2015,10(3):336-341,369. DOI: 10.3969/j.issn.2095-2783.2015.03.019

    WEI Jiuchuan,XIAO Lele,NIU Chao,et al. Characteristics analysis of the correlation factors of China mine water hazard accidents in 2001-2013[J]. China Sciencepaper,2015,10(3):336-341,369. DOI: 10.3969/j.issn.2095-2783.2015.03.019
    [7]
    郭彦华. 老空水水害事故原因分析及防治措施研究[J]. 中国安全科学学报,2006,16(10):141-144,1. DOI: 10.3969/j.issn.1003-3033.2006.10.025

    GUO Yanhua. Cause analysis of flooding accidents caused by goaf water and study on their countermeasures[J]. China Safety Science Journal,2006,16(10):141-144,1. DOI: 10.3969/j.issn.1003-3033.2006.10.025
    [8]
    董书宁. 对中国煤矿水害频发的几个关键科学问题的探讨[J]. 煤炭学报,2010,35(1):66-71.

    DONG Shuning. Some key scientific problems on water hazards frequently happened in China[J]. Journal of China Coal Society,2010,35(1):66-71.
    [9]
    罗立平. 矿井老空水形成机制与防水煤柱留设研究[D]. 北京: 中国矿业大学(北京), 2010.

    LUO Liping. Research on the form mechanism of goaf water and its waterproof coal pillar dimension problem in coal mine[D]. Beijing: China University of Mining & Technology(Beijing), 2010.
    [10]
    周建军. 废弃煤矿水位回升诱致邻矿突水威胁分析[J]. 煤矿安全,2013,44(7):166-168,171.

    ZHOU Jianjun. Risk analysis on adjacent mine water inrush caused by groundwater rebound of abandoned coal mine[J]. Safety in Coal Mines,2013,44(7):166-168,171.
    [11]
    肖华,杨志洋,崔勤利,等. 闭坑矿井采空区积水对防水煤柱稳定性的影响[J]. 煤炭科技,2014,35(4):105-107. DOI: 10.3969/j.issn.1008-3731.2014.04.044

    XIAO Hua,YANG Zhiyang,CUI Qinli,et al. Influence of ponding in goaf of closed pit mine on stability of waterproof coal pillar[J]. Coal Science & Technology Magazine,2014,35(4):105-107. DOI: 10.3969/j.issn.1008-3731.2014.04.044
    [12]
    尹会永,魏久传,王怀文,等. 基于数值模拟的矿井人为边界煤柱留设研究[J]. 矿业安全与环保,2013,40(2):12-15. DOI: 10.3969/j.issn.1008-4495.2013.02.006

    YIN Huiyong,WEI Jiuchuan,WANG Huaiwen,et al. Study on establishment of artificial mine boundary coal pillar based on numerical simulation[J]. Mining Safety & Environmental Protection,2013,40(2):12-15. DOI: 10.3969/j.issn.1008-4495.2013.02.006
    [13]
    李振鲁,张文泉. 巷道防隔水煤(岩)柱留设研究[J]. 煤炭技术,2017,36(4):71-73.

    LI Zhenlu,ZHANG Wenquan. Study on waterproof coal( rock) pillar in roadway[J]. Coal Technology,2017,36(4):71-73.
    [14]
    张文斌,吴基文,翟晓荣,等. 闭坑矿井矿界煤柱采动损伤及其安全性评价[J]. 工矿自动化,2020,46(2):39-44.

    ZHANG Wenbin,WU Jiwen,ZHAI Xiaorong,et al. Mining damage of mine boundary coal pillar in closed mine and its safety evaluation[J]. Industry and Mine Automation,2020,46(2):39-44.
    [15]
    刘洋. 长壁留煤柱支撑法开采煤柱优化设计及破坏的可监测性研究[D]. 西安: 西安科技大学, 2006.

    LIU Yang. Study on optimization design and destruct monitoring character of coal pillar in longwall remaining coal pillar support mining[D]. Xi'an: Xi'an University of Science and Technology, 2006.
    [16]
    国家煤矿安全监察局. 煤矿防治水细则[M]. 北京: 煤炭工业出版社, 2018.

    State Administration of Coal Mine Safety. Detailed rules for water prevention and control in coal mines[M]. Beijing: Coal Industry Press, 2018.
  • Related Articles

    [1]KONG Fanlong, LIU Jingdong, TIAN Lingtao, ZHANG Zhiqiang, WANG Dongdong, ZHENG Zhiqiang, XU Qiang. Study on reasonable width of coal pillar under water-rock interaction[J]. Journal of Mine Automation, 2022, 48(12): 144-150. DOI: 10.13272/j.issn.1671-251x.2022060062
    [2]QIU Xingguo, LI Jing. Prediction model of water inrush in coal mine based on IWOA-SVM[J]. Journal of Mine Automation, 2022, 48(1): 71-77. DOI: 10.13272/j.issn.1671-251x.2021050043
    [3]XIE Zhenhua, MA Tianhu, FAN Zhanglei, FAN Chaojun, LIU Husheng, HU Jiang, LI Yunfei. .Research on the coal pillar width of gob-side entry retaining under the damage effect of heterogeneous rock[J]. Journal of Mine Automation, 2021, 47(8): 56-62. DOI: 10.13272/j.issn.1671-251x.2020120037
    [4]LIU Ming, CAO Minyuan, LI Bo. Research on stress distribution characteristics of coal pillar in fully mechanized caving face[J]. Journal of Mine Automation, 2020, 46(10): 104-108. DOI: 10.13272/j.issn.1671 -251x.17533
    [5]JI Qianhui, HAO Shijun, WANG Cheng, LIU Weiwei. Application of comprehensive exploration technology for water-hazard prevention in coal mine working face[J]. Journal of Mine Automation, 2020, 46(3): 79-83. DOI: 10.13272/j.issn.1671-251x.2020020031
    [6]ZHANG Wenbin, WU Jiwen, ZHAI Xiaorong, HU Ru, BI Yaoshan, WANG Guangtao. Mining damage of mine boundary coal pillar in closed mine and its safety evaluatio[J]. Journal of Mine Automation, 2020, 46(2): 39-44. DOI: 10.13272/j.issn.1671-251x.2019060016
    [7]TIAN Feng, JIAO Cuicui, HAN Xiaobing. Research on karst collapse pillar imaging of water-rich area in coal mine[J]. Journal of Mine Automation, 2019, 45(4): 77-82. DOI: 10.13272/j.issn.1671-251x.2019020034
    [8]DUAN Li-hong. Design of pre-warning system of coal mine water disaster[J]. Journal of Mine Automation, 2013, 39(9): 116-118. DOI: 10.7526/j.issn.1671-251X.2013.09.030
    [9]LI Pei, CHEN Ying, MA Xiao-ping, YU De-xiang. Research of coal mine water burst forecasting method based on PCA-ELM[J]. Journal of Mine Automation, 2013, 39(9): 46-50. DOI: 10.7526/j.issn.1671-251X.2013.09.013
    [10]CHENG Feng-xia, RAO Jian-hua, ZHANG Xiao-ming, WANG Lan, YAO Zhi-gong. Design of Data Collection System of Mine Water Disaster Based on SPI Bus Technology[J]. Journal of Mine Automation, 2008, 34(3): 46-48.
  • Cited by

    Periodical cited type(8)

    1. 王翔,汪进超,刘厚成,宋万鹏,李姝祺. 基于声光组合测量的水下构筑物表面缺陷3维可视化方法. 工程科学与技术. 2025(02): 64-73 .
    2. 余勇冬,田逸宁,王斌. 常驻型有缆遥控水下机器人水下定位与通信技术研究进展. 科技创新与应用. 2023(07): 25-28+33 .
    3. 王一鸣,谢旭. 水下磁感应通信阵列天线磁场仿真与特性研究. 舰船科学技术. 2022(06): 106-113 .
    4. 王一鸣,谢旭. 协作式磁感应通信的线圈阵列优化设计. 电波科学学报. 2022(02): 304-313 .
    5. 高欣,孙远灿. 水下无线通信网络安全关键技术研究. 物联网技术. 2022(06): 45-47 .
    6. 陈刃,姜军. 城市水环境监测信息多级分布式采集系统. 西安工程大学学报. 2020(03): 81-86+116 .
    7. 贾凤玲. 多信道传输下物联网通信数据抗干扰算法. 计算机仿真. 2020(12): 122-126 .
    8. 李良玉,杨林. 物联网技术在水环境监测中的研究进展. 环境保护与循环经济. 2020(12): 59-64+74 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (177) PDF downloads (19) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return