LOU Quan, WAN Xiangyun, JIA Bing, et al. Research on the relationship between energy dissipation and stress drop in uniaxial compression failure of coal samples[J]. Journal of Mine Automation,2022,48(5):72-78. DOI: 10.13272/j.issn.1671-251x.2021110004
Citation: LOU Quan, WAN Xiangyun, JIA Bing, et al. Research on the relationship between energy dissipation and stress drop in uniaxial compression failure of coal samples[J]. Journal of Mine Automation,2022,48(5):72-78. DOI: 10.13272/j.issn.1671-251x.2021110004

Research on the relationship between energy dissipation and stress drop in uniaxial compression failure of coal samples

More Information
  • Received Date: October 31, 2021
  • Revised Date: April 07, 2022
  • Available Online: March 04, 2022
  • Compared with the energy dissipation of coal and rock failure, the more intuitive stress drop has certain practical significance for assisting the study of coal and rock failure characteristics and variation law of geophysical signals. And the stress drop is the macroscopic manifestation of energy dissipation. Most of the current research on energy dissipation and stress drop is only for one-sided research, without a comprehensive study on the relationship between the two. The relationship between the two is not clear, which restricts the application of the stress drop index. In order to solve the above problems, YAW−600 microcomputer controlled electro-hydraulic servo pressure testing machine is used to carry out uniaxial compression experiments on coal samples. The evolution characteristics of energy dissipation index and stress drop index in the whole process of coal sample failure under load and the relationship between them are studied and analyzed. Based on theoretical analysis, the relationship between energy dissipation index and the product of stress level and stress drop index is further studied. The results show that the energy dissipation index and stress drop index in the uniaxial compression failure process of coal sample have good response to the significant fracture of coal sample. And the indexes are in the same order of magnitude in numerical value, but they are not completely proportional. The energy dissipation rate is linearly related to the product of stress level and stress drop rate. And the energy dissipation is linearly related to the product of stress level and stress drop. The goodness of fit is 1 and 0.997 5 respectively. Compared with the energy dissipation index, the more intuitive product of stress level and stress drop index is more sensitive to the significant damage of coal samples, and has a burst characteristic. The research results clarify the relationship between energy dissipation and stress drop, and provide a certain theoretical support for the application of stress drop index. The relationship can be used for in-depth research on the coal rock failure characteristics and the variation law of geophysical signals such as acoustic emission, electromagnetic radiation and infrared radiation.
  • [1]
    李德行,王恩元,岳建华,等. 煤岩动力灾害预测的微电流技术及其应用研究[J]. 岩石力学与工程学报,2022,41(4):764-774.

    LI Dexing,WANG Enyuan,YUE Jianhua,et al. A weak current technique for coal and rock dynamic disaster prediction and its application[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(4):764-774.
    [2]
    李忠辉,娄全,王恩元,等. 顶板岩石受压破坏过程中声电热效应研究[J]. 中国矿业大学学报,2016,45(6):1098-1103.

    LI Zhonghui,LOU Quan,WANG Enyuan,et al. Experimental study of acoustic-electric and thermal infrared characteristics of roof rock failure[J]. Journal of China University of Mining and Technology,2016,45(6):1098-1103.
    [3]
    唐巨鹏,郝娜,潘一山,等. 基于声发射能量分析的煤与瓦斯突出前兆特征试验研究[J]. 岩石力学与工程学报,2021,40(1):31-42.

    TANG Jupeng,HAO Na,PAN Yishan,et al. Experimental study on precursor characteristics of coal and gas outbursts based on acoustic emission energy analysis[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):31-42.
    [4]
    徐剑坤,习丹阳,余鑫. 煤单轴破坏同步声电场响应规律试验研究[J]. 煤矿安全,2019,50(10):54-57.

    XU Jiankun,XI Danyang,YU Xin. Experimental study on response law of synchronous acoustic emission and electromagnetic radiation field of coal uniaxial failure[J]. Safety in Coal Mines,2019,50(10):54-57.
    [5]
    程富起,李忠辉,殷山,等. 预制裂纹煤样受载破坏的红外辐射特征研究[J]. 工矿自动化,2017,43(8):44-49.

    CHENG Fuqi,LI Zhonghui,YIN Shan,et al. Research on infrared radiation characteristics of pre-cracked coal sample under loaded breaking[J]. Industry and Mine Automation,2017,43(8):44-49.
    [6]
    LOU Quan,SONG Dazhao,HE Xueqiu,et al. Correlations between acoustic and electromagnetic emissions and stress drop induced by burst-prone coal and rock fracture[J]. Safety Science,2019,115(3):310-319.
    [7]
    PENG Ruidong,JU Yang,WANG Jianguo,et al. Energy dissipation and release during coal failure under conventional triaxial compression[J]. Rock Mechanics and Rock Engineering,2015,48:509-526. DOI: 10.1007/s00603-014-0602-0
    [8]
    张广辉,欧阳振华,邓志刚,等. 循环加载下冲击倾向性煤能量耗散与损伤演化研究[J]. 煤炭科学技术,2017,45(2):59-64.

    ZHANG Guanghui,OUYANG Zhenhua,DENG Zhigang,et al. Study on energy dissipation and damage evolution of bump proneness coal under cyclic loading[J]. Coal Science and Technology,2017,45(2):59-64.
    [9]
    王爱文,高乾书,潘一山,等. 预制钻孔煤样冲击倾向性及能量耗散规律[J]. 煤炭学报,2021,46(3):959-972.

    WANG Aiwen,GAO Qianshu,PAN Yishan,et al. Bursting liability and energy dissipation laws of prefabricated borehole coal samples[J]. Journal of China Coal Society,2021,46(3):959-972.
    [10]
    王宁,李树刚,王世斌,等. 煤体破碎过程中分形特征与能量耗散规律研究[J]. 煤矿安全,2021,52(4):1-6.

    WANG Ning,LI Shugang,WANG Shibin,et al. Research on fractal characteristics and energy dissipation law in the process of coal fragmentation[J]. Safety in Coal Mines,2021,52(4):1-6.
    [11]
    FUKUI K,OKUBO S,TERASHIMA T. Electromagnetic radiation from rock during uniaxial compression testing:the effects of rock characteristics and test conditions[J]. Rock Mechanics and Rock Engineering,2005,38(5):411-423. DOI: 10.1007/s00603-005-0046-7
    [12]
    CARPINTERI A,LACIDOGNA G,BORLA O,et al. Electromagnetic and neutron emissions from brittle rocks failure:experimental evidence and geological implications[J]. Sadhana,2012,37(1):59-78. DOI: 10.1007/s12046-012-0066-4
    [13]
    XIE Heping,LI Liyun,PENG Ruidong,et al. Energy analysis and criteria for structural failure of rocks[J]. Journal of Rock Mechanics and Geotechnical Engineering,2009,1(1):11-20. DOI: 10.3724/SP.J.1235.2009.00011
    [14]
    FENG Junjun,WANG Enyuan,CHEN Xia,et al. Energy dissipation rate:an indicator of coal deformation and failure under static and dynamic compressive loads[J]. International Journal of Mining Science and Technology,2018,28(3):397-406. DOI: 10.1016/j.ijmst.2017.11.006
  • Related Articles

    [1]SUN Kang, LIU Qiang, QIU Liming, LI Zhenlei, WANG Chaojie, SUN Qian, LIU Hairui, WANG Litao. Study on resistivity-stress-damage coupling patterns and mechanisms in coal failure under loading[J]. Journal of Mine Automation, 2025, 51(2): 155-162. DOI: 10.13272/j.issn.1671-251x.2024090052
    [2]WANG Zhifeng, WANG Jiachen, LI Lianghui, AN Bochao. Study on the prediction of gangue content rate in fully mechanized caving face based on DeepLab v3+[J]. Journal of Mine Automation, 2024, 50(10): 90-96. DOI: 10.13272/j.issn.1671-251x.2024070001
    [3]GENG Yanbing, WANG Zhangguo. A fast detection method for slime water flocculation and sedimentation rate based on image grayscale recognition[J]. Journal of Mine Automation, 2023, 49(12): 87-93. DOI: 10.13272/j.issn.1671-251x.2023050083
    [4]YU Fei, ZHANG Tong, LIU Wenjie, TAN Hui, YANG Xin, YU Xiang. Study on failure characteristics of coal sample under different unloading stress paths[J]. Journal of Mine Automation, 2022, 48(4): 96-104. DOI: 10.13272/j.issn.1671-251x.2021090081
    [5]JIANG Jianfeng, CHEN Sihua, YOU Lantao. Uplink rate enhancement algorithm for 5G network in intelligent mine[J]. Journal of Mine Automation, 2021, 47(12): 62-67. DOI: 10.13272/j.issn.1671-251x.2021080067
    [6]ZHU Liu. Research of deformation of roadway surrounding rock under effect of high horizontal stress in Gaojiapu Coal Mine[J]. Journal of Mine Automation, 2017, 43(11): 58-62. DOI: 10.13272/j.issn.1671-251x.2017.11.012
    [7]MU Dengcong, MENG Lei, DING Enjie, ZHANG Shen, DENG Yuanfang. Design of distributed coal-rock stress monitoring system[J]. Journal of Mine Automation, 2015, 41(10): 1-4. DOI: 10.13272/j.issn.1671-251x.2015.10.001
    [8]GUO Yin-jing, WU Kai, ZHAO Yuan, LI Chun-qiu. Research of fast acquisition method for low bit rate spread spectrum signal of mine through-the-earth communicatio[J]. Journal of Mine Automation, 2013, 39(6): 32-35.
    [9]ZHAO Qing-tao, GAO Jin-hai, CHENG Bao-ju. Numerical Simulation Research of Stability of Surrounding Rock of Inclined Soft Rock Roadway under Effect of Different Horizontal Stresses[J]. Journal of Mine Automation, 2011, 37(5): 41-44.
    [10]TIAN Qian-yi, MA Hua-hong, CHEN Jian-hua, SHI Xin-ling. A Kind of Multi-rate Sampling Method Based on Self-adaption Fuzzy Modulator[J]. Journal of Mine Automation, 2005, 31(3): 7-9.
  • Cited by

    Periodical cited type(15)

    1. 张宇. 综放工作面开采顶板变形控制及灾害事故防治. 煤矿现代化. 2024(01): 15-18 .
    2. 许广辉,张杨,李鹤鹤,宋高峰. 考虑采空区压实度的端面顶板稳定性数值模拟. 陕西煤炭. 2024(03): 17-20+52 .
    3. 叶敏杰,李英明,黄晨瑞,程素娟. 基于UDEC的复合顶板端面冒顶影响因素研究. 矿业研究与开发. 2024(03): 90-97 .
    4. 李大为. 综放工作面端面冒顶机理与围岩控制技术研究. 山西化工. 2024(04): 221-223 .
    5. 刘静波. 重复采动下采场围岩应力响应特征研究. 山东煤炭科技. 2024(09): 112-116+127 .
    6. 郭帅,庄志鹏,段晓博,吴祥业. 采空区下近距离下煤层覆岩结构及支架载荷分析. 矿业研究与开发. 2023(03): 142-146 .
    7. 庞晓亮,徐亚军,程骏,李世伟. 五连杆式液压支架梁端距控制优化方法研究. 矿山机械. 2023(04): 6-10 .
    8. 张国江. 近距离煤层群下位煤层开采顶板来压规律与稳定性控制. 中国矿山工程. 2023(02): 59-63 .
    9. 张强,张超超. 基于透明地质模型的端面距监测及智能控制. 陕西煤炭. 2023(04): 209-212 .
    10. 宋高峰,昝明惠,孔德中,魏臻,任志成,张帅. 综放工作面支架与围岩耦合关系及端面顶板稳定性研究. 煤炭工程. 2023(11): 95-101 .
    11. 李子路. 综采工作面煤壁片帮控制措施研究. 机械管理开发. 2022(09): 92-94 .
    12. 罗志强. 深部煤层进行低能耗开采的工艺效果分析. 山西化工. 2022(04): 67-69 .
    13. 白亚光. 浅埋煤层重复采动下覆岩运动及裂隙演化规律分析. 中国矿山工程. 2022(02): 60-65 .
    14. 李鹤鹤,冀宇鑫,宋高峰. 基于弹性地基梁理论的端面顶板稳定性分析. 科学技术与工程. 2022(30): 13234-13241 .
    15. 谭永新. 采空区下顶板失稳因素与控制技术. 煤炭技术. 2022(12): 59-62 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (251) PDF downloads (17) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return