XUE Xusheng, REN Zhongfu, MAO Qinghua, et al. Research on deviation correction control of coal mine roadheader based on digital twin[J]. Industry and Mine Automation,2022,48(1):26-32. DOI: 10.13272/j.issn.1671-251x.2021100006
Citation: XUE Xusheng, REN Zhongfu, MAO Qinghua, et al. Research on deviation correction control of coal mine roadheader based on digital twin[J]. Industry and Mine Automation,2022,48(1):26-32. DOI: 10.13272/j.issn.1671-251x.2021100006

Research on deviation correction control of coal mine roadheader based on digital twin

More Information
  • Received Date: October 07, 2021
  • Revised Date: January 07, 2022
  • Available Online: January 18, 2022
  • Published Date: January 19, 2022
  • In order to solve the problem of autonomous deviation control of roadheader in complex roadway environment, the paper analyzes the deviation reasons of roadheader, defines the functional requirements of deviation correction control of roadheader, proposes a deviation correction control system of coal mine roadheader based on digital twin, and introduces the system composition. Taking the roadheader central position control as an example, the system deviation correction control mechanism is analyzed, and a deviation correction control method of the roadheader based on binocular vision image information is proposed. Taking the roadway image detected by binocular vision as the basic data, by extracting the characteristics of the roadway image and analyzing the relationship between the roadway coordinate system and the roadheader coordinate system, the position and attitude parameters of the roadheader relative to the roadway space are calculated, and the deviation correction control of the roadheader is carried out according to the solution results. The digital model and the positioning and orientation parameter database of the roadheader and the roadway are constructed, and the virtual remote deviation correction control of the roadheader is realized through the virtual-real mapping relationship. The experimental results show that the deviation correction control system based on digital twin can compensate the yaw angle and offset distance of the roadheader under different working conditions effectively. The deviation correction process can be displayed on the monitoring interface in real time, and the simulation results of deviation correction path planning are consistent with the actual working conditions.
  • [1]
    马宏伟, 王鹏, 张旭辉, 等. 煤矿巷道智能掘进机器人系统关键技术研究[J]. 西安科技大学学报,2020,40(5):751-759.

    MA Hongwei, WANG Peng, ZHANG Xuhui, et al. Research on key technology of intelligent tunneling robotic system in coal mine[J]. Journal of Xi'an University of Science and Technology,2020,40(5):751-759.
    [2]
    刘峰. 对煤矿智能化发展的认识和思考[J]. 中国煤炭工业,2020(8):5-9. DOI: 10.3969/j.issn.1673-9612.2020.08.002

    LIU Feng. Understanding and thinking on intelligent development of coal mine[J]. China Coal Industry,2020(8):5-9. DOI: 10.3969/j.issn.1673-9612.2020.08.002
    [3]
    葛世荣. 煤矿机器人现状及发展方向[J]. 中国煤炭,2019,45(7):18-27. DOI: 10.3969/j.issn.1006-530X.2019.07.004

    GE Shirong. Present situation and development direction of coal mine robots[J]. China Coal,2019,45(7):18-27. DOI: 10.3969/j.issn.1006-530X.2019.07.004
    [4]
    王苏彧, 杜毅博, 薛光辉, 等. 掘进机远程控制技术及监测系统研究与应用[J]. 中国煤炭,2013,39(4):63-67. DOI: 10.3969/j.issn.1006-530X.2013.04.016

    WANG Suyu, DU Yibo, XUE Guanghui, et al. Research and application of remote control techniques and monitoring system for roadheader[J]. China Coal,2013,39(4):63-67. DOI: 10.3969/j.issn.1006-530X.2013.04.016
    [5]
    张敏骏, 蔡岫航, 吕馥言, 等. 受限巷道空间区域栅格化掘进机自主纠偏研究[J]. 仪器仪表学报,2018,39(3):62-70.

    ZHANG Minjun, CAI Xiuhang, LYU Fuyan, et al. Research on roadheader auto rectification in limited roadway space based on regional grid[J]. Chinese Journal of Scientific Instrument,2018,39(3):62-70.
    [6]
    吴淼, 沈阳, 吉晓冬, 等. 悬臂式掘进机行走轨迹及偏差感知方法[J]. 煤炭学报,2021,46(7):2046-2056.

    WU Miao, SHEN Yang, JI Xiaodong, et al. Trajectory and deviation perception method of boom-type roadheader[J]. Journal of China Coal Society,2021,46(7):2046-2056.
    [7]
    宗凯, 符世琛. 大倾角巷道掘进机截割过程整机滑移的力学模型[J]. 黑龙江科技大学学报,2020,30(4):404-410. DOI: 10.3969/j.issn.2095-7262.2020.04.010

    ZONG Kai, FU Shichen. Mechanical model for slippage of roadheader during cutting process in large dip roadway[J]. Journal of Heilongjiang University of Science and Technology,2020,30(4):404-410. DOI: 10.3969/j.issn.2095-7262.2020.04.010
    [8]
    杨健健, 张强, 吴淼, 等. 巷道智能化掘进的自主感知及调控技术研究进展[J]. 煤炭学报,2020,45(6):2045-2055.

    YANG Jianjian, ZHANG Qiang, WU Miao, et al. Research progress of autonomous perception and control technology for intelligent heading[J]. Journal of China Coal Society,2020,45(6):2045-2055.
    [9]
    张旭辉, 张超, 王妙云, 等. 数字孪生驱动的悬臂式掘进机虚拟操控技术[J]. 计算机集成制造系统,2021,27(6):1617-1628.

    ZHANG Xuhui, ZHANG Chao, WANG Miaoyun, et al. Digital twin-driven virtual control technology of cantilever roadheader[J]. Computer Integrated Manufacturing Systems,2021,27(6):1617-1628.
    [10]
    张旭辉, 刘博兴, 张超, 等. 基于模糊PID的智能掘进机器人系统轨迹纠偏[J]. 煤矿机械,2021,42(5):194-197.

    ZHANG Xuhui, LIU Boxing, ZHANG Chao, et al. Trajectory correction of intelligent tunneling robot based on fuzzy PID[J]. Coal Mine Machinery,2021,42(5):194-197.
    [11]
    张旭辉, 赵建勋, 杨文娟, 等. 悬臂式掘进机视觉导航与定向掘进控制技术[J]. 煤炭学报,2021,46(7):2186-2196.

    ZHANG Xuhui, ZHAO Jianxun, YANG Wenjuan, et al. Vision-based navigation and directional heading control technologies of boom-type roadheader[J]. Journal of China Coal Society,2021,46(7):2186-2196.
    [12]
    张旭辉, 周创, 张超, 等. 基于视觉测量的快速掘进机器人纠偏控制研究[J]. 工矿自动化,2020,46(9):21-26.

    ZHANG Xuhui, ZHOU Chuang, ZHANG Chao, et al. Research on deviation correction control of rapid tunneling robot based on vision measurement[J]. Industry and Mine Automation,2020,46(9):21-26.
    [13]
    张超, 张旭辉, 毛清华, 等. 煤矿智能掘进机器人数字孪生系统研究及应用[J]. 西安科技大学学报,2020,40(5):813-822.

    ZHANG Chao, ZHANG Xuhui, MAO Qinghua, et al. Research and application of digital twin system for intelligent tunneling equipment in coal mine[J]. Journal of Xi'an University of Science and Technology,2020,40(5):813-822.
    [14]
    张敏骏, 成荣, 朱煜, 等. 倾斜巷道掘进机纠偏运动分析与控制研究[J/OL]. 煤炭学报: 1-9[2021-09-08].DOI: 10.13225/j.cnki.jccs.2020.0855.

    ZHANG Minjun, CHENG Rong, ZHU Yu, et al. Study on roadheader rectification running performance and control in the incline coalmine roadway[J/OL]. Journal of China Coal Society:1-9[2021-09-08]. DOI: 10.13225/j.cnki.jccs.2020.0855.
    [15]
    薛旭升, 张旭辉, 毛清华, 等. 基于双目视觉的掘进机器人定位定向方法研究[J]. 西安科技大学学报,2020,40(5):781-789.

    XUE Xusheng, ZHANG Xuhui, MAO Qinghua, et al. Localization and orientation method of roadheader robot based on binocular vision[J]. Journal of Xi'an University of Science and Technology,2020,40(5):781-789.
  • Related Articles

    [1]CHENG Lei, LI Zhengjian, SHI Haorong, WANG Xin. A bottom air temperature prediction model based on PSO-Elman neural network[J]. Journal of Mine Automation, 2024, 50(1): 131-137. DOI: 10.13272/j.issn.1671-251x.2023090062
    [2]TIAN Jie, LI Yang, ZHANG Lei, LIU Zhen. Adaptive control of temporary support force based on PSO-BP neural network[J]. Journal of Mine Automation, 2023, 49(7): 67-74. DOI: 10.13272/j.issn.1671-251x.2022100017
    [3]HUI Ali, LU Weiqiang, RONG Xiang, WEI Lipeng, CHEN Wenya. Research on fault diagnosis method of asynchronous motor based on Park-WPT and WOA-LSSVM[J]. Journal of Mine Automation, 2021, 47(12): 106-113. DOI: 10.13272/j.issn.1671-251x.2021070035
    [4]TIAN Jie, YIN Xiaoqi, WEN Yicheng. Method of cutting trajectory planning of roadheader based on hybrid IWO-PSO algorithm[J]. Journal of Mine Automation, 2021, 47(12): 55-61. DOI: 10.13272/j.issn.1671-251x.2021050018
    [5]JU Chen, ZHANG Chao, FAN Hongwei, ZHANG Xuhui, YANG Yiqing, YAN Yang. Rolling bearing fault diagnosis based on wavelet packet decomposition and PSO-BPN[J]. Journal of Mine Automation, 2020, 46(8): 70-74. DOI: 10.13272/j.issn.1671-251x.2019120022
    [6]CUI Lizhen, XU Fanfei, WANG Qiaoli, GAO Lili. Underground adaptive positioning algorithm based on PSO-BP neural network[J]. Journal of Mine Automation, 2018, 44(2): 74-79. DOI: 10.13272/j.issn.1671-251x.2017090028
    [7]PAN Lei, LI Li-juan, DING Ting-ting, LIU Dui. Forecasting of Short-term Power Load Based on Improved PSO Algorithm and LS-SVM[J]. Journal of Mine Automation, 2012, 38(9): 55-59.
    [8]SUN Jie, HAN Yan, DUAN Yong, CUI Bao-xia. PID Neural Network Control System of Ball Mill Based on Modified PSO Algorithm[J]. Journal of Mine Automation, 2011, 37(5): 59-62.
    [9]SU Po, CHEN Qing, . Analysis of Mine Low-voltage Leakage Protection in Situation of Great Disparity between Long and Short Lines and Big Unbalanced Current[J]. Journal of Mine Automation, 2010, 36(10): 32-35.
    [10]LIU Rui-fang, MEI Xiao-a. Nonlinear Correction of Methane Sensor Based on Least Square Support Vector Machine[J]. Journal of Mine Automation, 2009, 35(5): 8-12.
  • Cited by

    Periodical cited type(14)

    1. 谭超,闵薪宇,辛亮,孙其浩,谭继伟,欧星作. 一种基于单轴向充磁永磁环励磁的钢丝绳无损检测方法. 传感技术学报. 2024(04): 731-736 .
    2. 赵陆. 电梯钢丝绳损伤检测装置设计. 机械管理开发. 2024(12): 105-106+109 .
    3. 曹义威,张士超,陈小伟,徐光鹏,何宝林. 海洋石油钻修井钢丝绳在线监测技术研究与应用. 无损探伤. 2023(04): 30-33 .
    4. 王文庆,刘文辉,李生辉,徐午言. 基于永磁环励磁结构的钢丝绳无损检测设计. 西安邮电大学学报. 2023(05): 92-101 .
    5. 田劼,孙钢钢,李睿峰,王伟. 基于正交试验的钢丝绳探伤仪结构参数优化. 工矿自动化. 2022(09): 100-108 . 本站查看
    6. 王红尧,吴佳奇,李长恒,唐文锦,张艳林. 矿用钢丝绳损伤检测信号处理方法研究. 工矿自动化. 2021(02): 58-62 . 本站查看
    7. 窦连城,战卫侠,白晓瑞. 钢丝绳内外部断丝损伤识别. 工矿自动化. 2021(03): 83-88 . 本站查看
    8. 王红尧,田劼,张艳林,刘志宏,陈艺童. 矿用钢丝绳在线监测教学实验装置关键技术. 煤矿安全. 2021(06): 177-182 .
    9. 王锐. 参加者较少的钢丝拉伸能力验证评价方法应用. 机械研究与应用. 2021(03): 208-211 .
    10. 靳志强. 矿用提升机钢丝绳损伤检测装置的设计. 机械管理开发. 2021(08): 253-255 .
    11. 田劼,王洋洋,郭红飞,赵彩跃. 基于漏磁检测的钢丝绳探伤原理与方法研究. 煤炭工程. 2021(09): 95-100 .
    12. 王红尧,李小伟,韩亦淼,吕昕. 矿用钢丝绳损伤检测系统设计. 工矿自动化. 2020(06): 92-97 . 本站查看
    13. 张方泽. 矿用提升机制动过程与制动效果分析. 低碳世界. 2020(08): 166-167 .
    14. 窦连城,战卫侠. 钢丝绳断丝损伤漏磁场计算与仿真研究. 工矿自动化. 2020(10): 87-91 . 本站查看

    Other cited types(12)

Catalog

    Article Metrics

    Article views (1822) PDF downloads (84) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return