Volume 48 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
CHE Shouquan, LI Tao, BAO Congwang, et al. Research on denoising method of remote sensing image in mining area[J]. Industry and Mine Automation,2022,48(1):111-116.  doi: 10.13272/j.issn.1671-251x.2021090086
Citation: CHE Shouquan, LI Tao, BAO Congwang, et al. Research on denoising method of remote sensing image in mining area[J]. Industry and Mine Automation,2022,48(1):111-116.  doi: 10.13272/j.issn.1671-251x.2021090086

Research on denoising method of remote sensing image in mining area

doi: 10.13272/j.issn.1671-251x.2021090086
  • Received Date: 2021-09-27
  • Rev Recd Date: 2022-01-13
  • Publish Date: 2022-01-20
  • Denoising is an important preprocessing step for the effective application of remote sensing images in mining area. The existing remote sensing image denoising methods based on statistics, domain transformation and learning generally have the problems of excessive smoothing of details and insufficient texture preservation. Based on the good edge-preserving property of guided filtering, an iterative guided filtering method is proposed. The method enhances the edge characteristics extraction effect of remote sensing images by guided mapping of residual information, and iteratively performing guided filtering and hyper-parameter shrinkage. The iterative guided filtering is combined with traditional wavelet soft threshold, non-local mean (NLM) filtering, block matching 3D(BM3D) filtering and other denoising methods, which improves the peak signal-to-noise ratio of the traditional method effectively. Among them, NLM filtering and BM3D filtering have the most obvious effects on improving the denoising performance. The iterative guided filtering and BM3D filtering are fused, and the denoised images are initially obtained through BM3D filtering to obtain residual data. The iterative guided filtering is used to process the residual data. While improving the image denoising effect, the image detail characteristics are well preserved. The iterative guided filtering and BM3D filtering fusion method are used for coal gangue yard identification and landslide area edge recognition in remote sensing images of mining areas, and good results have been achieved.

     

  • loading
  • [1]
    王义方, 李新举, 李富强, 等. 基于多时相遥感影像的采煤塌陷区典型扰动轨迹识别−以山东省济宁市典型高潜水位矿区为例[J]. 地质学报,2019,93(增刊1):301-309.

    WANG Yifang, LI Xinju, LI Fuqiang, et al. Identification of typical disturbance trajectory in coal mining subsidence area based on multi-temporal remote sensing images[J]. Acta Geologica Sinica,2019,93(S1):301-309.
    [2]
    杨宏业, 赵银娣, 董霁红. 基于纹理转移的露天矿区遥感图像超分辨率重建[J]. 煤炭学报,2019,44(12):3781-3789.

    YANG Hongye, ZHAO Yindi, DONG Jihong. Remote sensing image super-resolution of open-pit mining area based on texture transfer[J]. Journal of China Coal Society,2019,44(12):3781-3789.
    [3]
    宋国策, 张志. 内蒙古新巴尔虎右旗多金属矿区扬尘风积物遥感监测方法[J]. 国土资源遥感,2020,32(2):46-53.

    SONG Guoce, ZHANG Zhi. Remote sensing monitoring method for dust and wind accumulation in multimetal mining area of Xin Barag Right Banner, Inner Mongolia[J]. Remote Sensing for Land & Resources,2020,32(2):46-53.
    [4]
    周斌, 李雨鸿, 李辑, 等. 岫岩偏岭矿区植被修复生态环境监测评估[J]. 航天返回与遥感,2019,40(3):103-110. doi: 10.3969/j.issn.1009-8518.2019.03.013

    ZHOU Bin, LI Yuhong, LI Ji, et al. Monitoring and assessment of vegetation restoration ecology environment in Xiuyan pianling-mining area[J]. Spacecraft Recovery & Remote Sensing,2019,40(3):103-110. doi: 10.3969/j.issn.1009-8518.2019.03.013
    [5]
    汤伏全, 李林宽, 李小涛, 等. 基于无人机影像的采动地表裂缝特征研究[J]. 煤炭科学技术,2020,48(10):130-136.

    TANG Fuquan, LI Linkuan, LI Xiaotao, et al. Research on characteristics of mining-induced surface cracks based on UAV images[J]. Coal Science and Technology,2020,48(10):130-136.
    [6]
    张元军. 基于双边滤波与小波阈值法的矿区遥感图像处理[J]. 金属矿山,2017(9):170-173. doi: 10.3969/j.issn.1001-1250.2017.09.035

    ZHANG Yuanjun. Remote sensing image processing method of mining area based on bilateral filtering algorithm and wavelet thresholding method[J]. Metal Mine,2017(9):170-173. doi: 10.3969/j.issn.1001-1250.2017.09.035
    [7]
    FENG Xubin, ZHANG Wuxia, SU Xiuqin, et al. Optical remote sensing image denoising and super-resolution reconstructing using optimized generative network in wavelet transform domain[J]. Remote Sensing,2021,13(9):1858-1880. doi: 10.3390/rs13091858
    [8]
    WEN Nu, YANG Shizhi, CUI Shengcheng. High resolution remote sensing image denoising based on curvelet-wavelet transform[J]. Journal of Zhejiang University(Engineering Science),2015,49(1):79-86.
    [9]
    王跃跃, 陈蓉, 于丽君, 等. 结合二维EMD与自适应高斯滤波的遥感卫星影像去噪[J]. 测绘通报,2019(2):22-27.

    WANG Yueyue, CHEN Rong, YU Lijun, et al. Denoising from remote sensing satellite image based on two-dimensional EMD and adaptive Gauss filtering[J]. Bulletin of Surveying and Mapping,2019(2):22-27.
    [10]
    王小兵. 融合提升小波阈值与多方向边缘检测的矿区遥感图像去噪[J]. 国土资源遥感,2020,32(4):46-52.

    WANG Xiaobing. Denoising algorithm based on the fusion of lifting wavelet thresholding and multidirectional edge detection of remote sensing image of mining area[J]. Remote Sensing for Land & Resources,2020,32(4):46-52.
    [11]
    HUANG Zhenghua, ZHANG Yaozong, QIAN Li, et al. Unidirectional variation and deep CNN denoiser priors for simultaneously destriping and denoising optical remote sensing images[J]. International Journal of Remote Sensing,2019(15):5737-5748.
    [12]
    TIAN Chunwei, XU Yong, ZUO Wangmeng. Image denoising using deep CNN with batch renormalization[J]. Neural Networks,2020,121:461-473. doi: 10.1016/j.neunet.2019.08.022
    [13]
    LIU Jing, XIANG Pengxia, ZHANG Xiaoyan. An improved generative adversarial network for remote sensing image denoising[C]//The 13th International Conference on Digital Image Processing, Singapore, 2021: 11878-11886.
    [14]
    秦振涛, 杨茹. 基于结构性字典学习的毛儿盖遥感图像去噪研究[J]. 遥感技术与应用,2019,34(4):793-798.

    QIN Zhentao, YANG Ru. Remote sensing image of Mao'ergai denoising based on structured dictionary learning[J]. Remote Sensing Technology and Application,2019,34(4):793-798.
    [15]
    马晓乐. 基于稀疏表示的去噪声遥感图像融合算法优化[D]. 北京: 北京交通大学, 2020.

    MA Xiaole. The algorithm optimization for de-noised remote sensing fusion based on sparse representation[D]. Beijing: Beijing Jiaotong University, 2020.
    [16]
    陈曦. 基于深度卷积神经网络的图像去噪[D]. 合肥: 合肥工业大学, 2019.

    CHEN Xi. Image denoising based on deep convolutional neural networks[D]. Hefei: Hefei University of Technology, 2019.
    [17]
    冯旭斌. 基于深度学习的光学遥感图像去噪与超分辨率重建算法研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2020.

    FENG Xubin. Research on deep-learning based optical remote sensing image denosing and super-resoution reconstructing algorithm[D]. Xi’an: University of Chinese Academy of Science(Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences), 2020.
    [18]
    HE Kaiming, SUN Jian, TANG Xiaoou. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409.
    [19]
    DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing,2007:2080-2095.
    [20]
    刘佳丽. 基于遥感的露天灰岩矿山开采信息提取[D]. 唐山: 华北理工大学, 2018.

    LIU Jiali. The opencast limestone mine information extraction based on remote sensing[D]. Tangshan: North China University of Science and Technology, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (149) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return