Citation: | CHE Shouquan, LI Tao, BAO Congwang, et al. Research on denoising method of remote sensing image in mining area[J]. Industry and Mine Automation,2022,48(1):111-116. DOI: 10.13272/j.issn.1671-251x.2021090086 |
[1] |
王义方, 李新举, 李富强, 等. 基于多时相遥感影像的采煤塌陷区典型扰动轨迹识别−以山东省济宁市典型高潜水位矿区为例[J]. 地质学报,2019,93(增刊1):301-309.
WANG Yifang, LI Xinju, LI Fuqiang, et al. Identification of typical disturbance trajectory in coal mining subsidence area based on multi-temporal remote sensing images[J]. Acta Geologica Sinica,2019,93(S1):301-309.
|
[2] |
杨宏业, 赵银娣, 董霁红. 基于纹理转移的露天矿区遥感图像超分辨率重建[J]. 煤炭学报,2019,44(12):3781-3789.
YANG Hongye, ZHAO Yindi, DONG Jihong. Remote sensing image super-resolution of open-pit mining area based on texture transfer[J]. Journal of China Coal Society,2019,44(12):3781-3789.
|
[3] |
宋国策, 张志. 内蒙古新巴尔虎右旗多金属矿区扬尘风积物遥感监测方法[J]. 国土资源遥感,2020,32(2):46-53.
SONG Guoce, ZHANG Zhi. Remote sensing monitoring method for dust and wind accumulation in multimetal mining area of Xin Barag Right Banner, Inner Mongolia[J]. Remote Sensing for Land & Resources,2020,32(2):46-53.
|
[4] |
周斌, 李雨鸿, 李辑, 等. 岫岩偏岭矿区植被修复生态环境监测评估[J]. 航天返回与遥感,2019,40(3):103-110. DOI: 10.3969/j.issn.1009-8518.2019.03.013
ZHOU Bin, LI Yuhong, LI Ji, et al. Monitoring and assessment of vegetation restoration ecology environment in Xiuyan pianling-mining area[J]. Spacecraft Recovery & Remote Sensing,2019,40(3):103-110. DOI: 10.3969/j.issn.1009-8518.2019.03.013
|
[5] |
汤伏全, 李林宽, 李小涛, 等. 基于无人机影像的采动地表裂缝特征研究[J]. 煤炭科学技术,2020,48(10):130-136.
TANG Fuquan, LI Linkuan, LI Xiaotao, et al. Research on characteristics of mining-induced surface cracks based on UAV images[J]. Coal Science and Technology,2020,48(10):130-136.
|
[6] |
张元军. 基于双边滤波与小波阈值法的矿区遥感图像处理[J]. 金属矿山,2017(9):170-173. DOI: 10.3969/j.issn.1001-1250.2017.09.035
ZHANG Yuanjun. Remote sensing image processing method of mining area based on bilateral filtering algorithm and wavelet thresholding method[J]. Metal Mine,2017(9):170-173. DOI: 10.3969/j.issn.1001-1250.2017.09.035
|
[7] |
FENG Xubin, ZHANG Wuxia, SU Xiuqin, et al. Optical remote sensing image denoising and super-resolution reconstructing using optimized generative network in wavelet transform domain[J]. Remote Sensing,2021,13(9):1858-1880. DOI: 10.3390/rs13091858
|
[8] |
WEN Nu, YANG Shizhi, CUI Shengcheng. High resolution remote sensing image denoising based on curvelet-wavelet transform[J]. Journal of Zhejiang University(Engineering Science),2015,49(1):79-86.
|
[9] |
王跃跃, 陈蓉, 于丽君, 等. 结合二维EMD与自适应高斯滤波的遥感卫星影像去噪[J]. 测绘通报,2019(2):22-27.
WANG Yueyue, CHEN Rong, YU Lijun, et al. Denoising from remote sensing satellite image based on two-dimensional EMD and adaptive Gauss filtering[J]. Bulletin of Surveying and Mapping,2019(2):22-27.
|
[10] |
王小兵. 融合提升小波阈值与多方向边缘检测的矿区遥感图像去噪[J]. 国土资源遥感,2020,32(4):46-52.
WANG Xiaobing. Denoising algorithm based on the fusion of lifting wavelet thresholding and multidirectional edge detection of remote sensing image of mining area[J]. Remote Sensing for Land & Resources,2020,32(4):46-52.
|
[11] |
HUANG Zhenghua, ZHANG Yaozong, QIAN Li, et al. Unidirectional variation and deep CNN denoiser priors for simultaneously destriping and denoising optical remote sensing images[J]. International Journal of Remote Sensing,2019(15):5737-5748.
|
[12] |
TIAN Chunwei, XU Yong, ZUO Wangmeng. Image denoising using deep CNN with batch renormalization[J]. Neural Networks,2020,121:461-473. DOI: 10.1016/j.neunet.2019.08.022
|
[13] |
LIU Jing, XIANG Pengxia, ZHANG Xiaoyan. An improved generative adversarial network for remote sensing image denoising[C]//The 13th International Conference on Digital Image Processing, Singapore, 2021: 11878-11886.
|
[14] |
秦振涛, 杨茹. 基于结构性字典学习的毛儿盖遥感图像去噪研究[J]. 遥感技术与应用,2019,34(4):793-798.
QIN Zhentao, YANG Ru. Remote sensing image of Mao'ergai denoising based on structured dictionary learning[J]. Remote Sensing Technology and Application,2019,34(4):793-798.
|
[15] |
马晓乐. 基于稀疏表示的去噪声遥感图像融合算法优化[D]. 北京: 北京交通大学, 2020.
MA Xiaole. The algorithm optimization for de-noised remote sensing fusion based on sparse representation[D]. Beijing: Beijing Jiaotong University, 2020.
|
[16] |
陈曦. 基于深度卷积神经网络的图像去噪[D]. 合肥: 合肥工业大学, 2019.
CHEN Xi. Image denoising based on deep convolutional neural networks[D]. Hefei: Hefei University of Technology, 2019.
|
[17] |
冯旭斌. 基于深度学习的光学遥感图像去噪与超分辨率重建算法研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2020.
FENG Xubin. Research on deep-learning based optical remote sensing image denosing and super-resoution reconstructing algorithm[D]. Xi’an: University of Chinese Academy of Science(Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences), 2020.
|
[18] |
HE Kaiming, SUN Jian, TANG Xiaoou. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409.
|
[19] |
DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing,2007:2080-2095.
|
[20] |
刘佳丽. 基于遥感的露天灰岩矿山开采信息提取[D]. 唐山: 华北理工大学, 2018.
LIU Jiali. The opencast limestone mine information extraction based on remote sensing[D]. Tangshan: North China University of Science and Technology, 2018.
|
[1] | QIN Peilin, ZHANG Chuanwei, ZHOU Libing, WANG Jianlong. Research on 3D target detection of unmanned trackless rubber-tyred vehicle in coal mine[J]. Journal of Mine Automation, 2022, 48(2): 35-41. DOI: 10.13272/j.issn.1671-251x.2021110068 |
[2] | WU Haiyan, WANG Tianlong, ZHANG Xuhui, MAO Qinghua, DU Yuyang, GAO Baizhan, MA Hongwei. Remote monitoring system of shearer based on Quest3D and PLC[J]. Journal of Mine Automation, 2015, 41(11): 14-17. DOI: 10.13272/j.issn.1671-251x.2015.11.004 |
[3] | LIU Haiyang, WANG Dahu, WANG Jingchong. Design of virtual training system for shearer operation based on Quest3D[J]. Journal of Mine Automation, 2015, 41(4): 102-105. DOI: 10.13272/j.issn.1671-251x.2015.04.026 |
[4] | WANG Li-li. 3D Implementation of SVG[J]. Journal of Mine Automation, 2012, 38(12): 33-36. |
[5] | YAN Jian-wei, WANG Yun-jia, ZHU Yong. Monitoring of Surface Subsidence Based on D-InSAR Technology in Huainan Mining Area[J]. Journal of Mine Automation, 2011, 37(8): 48-51. |
[6] | SHU Li-chu. 3D Visualization Platform of Mine Based on 3D GIS[J]. Journal of Mine Automation, 2011, 37(6): 7-11. |
[7] | WANG Ji-shui, GU Wei-jie. Research of Hybrid Spatial Index Technology in 3DGIS[J]. Journal of Mine Automation, 2010, 36(12): 62-65. |
[8] | GUO Ju. Design of 3D Virtual Mine Based on 3D GIS Technology[J]. Journal of Mine Automation, 2007, 33(5): 1-4. |
[9] | YU Xiao-ya. Programming Technnique of Interactive 3-Dimensional Animation Based on Java 3D[J]. Journal of Mine Automation, 2003, 29(6): 57-59. |
[10] | YANG Jing, JIANG Shi-wen, ZHU Yin-fe. Model SZJ-D2 Test Bed of Gummed Tube[J]. Journal of Mine Automation, 2002, 28(5): 19-19. |
1. |
胡志峰,吴龙华,陈竹安. 基于自组织迁移算法小波阈值矿区遥感图像去噪研究. 江西科学. 2025(01): 59-64 .
![]() | |
2. |
裴丹,房坤,庆宇东,陈沛. 基于改进YOLOv5的矿山遥感图像去噪方法. 工矿自动化. 2025(03): 148-155 .
![]() | |
3. |
李亦珂,王春梅. 基于离散小波域深度残差学习的矿区遥感图像增强算法. 金属矿山. 2024(04): 215-220 .
![]() | |
4. |
徐浩哲,李鑫雨,闫钰亭,王蓁,常远. 基于优化Canny-Ostu算法的爆破块度识别. 有色金属(矿山部分). 2024(03): 50-55 .
![]() | |
5. |
樊培利,王建军,艾薇. 基于生成对抗残差学习的矿山远程监控图像去噪算法. 金属矿山. 2024(05): 286-292 .
![]() | |
6. |
沈丹萍,赵爽. 基于轻量化YOLOX-S与多阈值分割的矿山遥感图像去噪算法. 金属矿山. 2024(09): 175-180 .
![]() | |
7. |
戴文祥,陈雷,闫鹏飞,王利欣,李波,袁鹏喆. 基于三维激光扫描的煤矿巷道形变监测方法. 工矿自动化. 2023(10): 61-67+95 .
![]() | |
8. |
樊华,王文旭,李晓阳,陈睿,韩贞辉. 结合非下采样剪切波变换的BM3D去除图像噪声方法研究. 震灾防御技术. 2023(03): 651-663 .
![]() | |
9. |
李清运,车守全,王浪威. 基于字典学习的遥感图像去噪方法研究. 山东工业技术. 2022(04): 77-81 .
![]() | |
10. |
刘晓明,白宗化. 基于滤波方法的遥感图像去噪算法. 中国电子科学研究院学报. 2022(10): 952-958 .
![]() |